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We demonstrate that the powerlike nonperturbative behavior of gluon and ghost propagators in the
infrared limit of Yang-Mills theories can provide at finite temperatures T a negative T4 contribution to the
pressure and energy density. The existence of a mass gap then implies new relations between the infrared
critical exponents of gluon and ghost propagators.
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The zeros of Green’s functions play an important role in
various condensed matter systems ranging from superfluid
3He to unconventional superconductors [1]. Under certain
circumstances poles of Green’s functions in momentum
space, which determine the excitation spectrum of the
system, can undergo transition to their opposites, that is,
zeros. A known example of such a system is the Mott
insulator. In this case, a pole of a one-particle Green’s
function becomes a zero as the system passes through the
Mott transition [2]. In field theory, a similar example is
provided by strong interactions. As first argued by Gribov
[3], in the Landau gauge a perturbative pole of the gluon
propagator is converted into a zero at the vanishing mo-
mentum [4,5]. This phenomenon is confirmed by both
analytical calculations and numerical simulations [6].
The effect is related to the violation of reflection positivity
and is a signature of the color confinement. The aim of this
Letter is to demonstrate that anomalous behavior of the
gluon propagator in the infrared region is directly related to
the anomalous contribution of massless degrees of freedom
at vanishing temperatures. The very existence of a mass
gap in confining theories constitutes then a new kind of
analyticity which constrains infrared asymptotes of the
propagators.

We consider pressure P and energy density � � E=V of
strongly interacting Yang-Mills fields at temperature T and
in volume V. In the limit of vanishing coupling, or in the
tree approximation,

 "free�T� � 3Pfree�T� � Nd:o:f:CSBT4; (1)

where CSB � �2=30 is the Stefan-Boltzmann factor. There
are Nd:o:f: � 2�N2

c � 1� degrees of freedom corresponding
to N2

c � 1 gluons with two transverse polarizations.
Nonperturbative strong interactions are manifested in

suppression of the energy density and pressure at T �
Tc, where Tc is the temperature of the confinement-
deconfinement phase transition:

 

"�T�

T4
� 1;

P�T�

T4 � 1 for T � Tc: (2)

In particular, such a suppression is established via lattice
simulations both in the pure gluonic SU�3� case [7] and in a
more realistic case which incorporates light quarks as well
[8]. Hereafter we will concentrate on the pure gluonic
SU�3� gauge system.

The suppression (2) is a consequence of two intimately
related properties of QCD, namely, confinement of color
and mass-gap generation. Massless gluons are confined
into glueballs which are massive. As a result, all the
thermodynamic quantities are to be suppressed at low
temperatures as O� expf�M=Tg�, where M is the mass of
the lightest glueball; for a related discussion see [9].

The simplest quantity for a homogeneous system in the
thermodynamic equilibrium is pressure,

 P �
T
V

logZ � Pfree � Pint; (3)

where Z is the partition function and we explicitly separate
the tree level contribution Pfree given by Eq. (1). The
second term Pint is a correction due to the interactions.
The interaction part of the thermodynamic quantities can
be written as a loop expansion, in terms of the full propa-
gators and vertices; see, e.g., Ref. [10].

In order to make explicit calculations one generically
needs a gauge fixing, and below we usually refer to the
Landau gauge which—being both Lorentz and color-
symmetric—is one of the best studied gauges nowadays.
However, our approach is not limited to the Landau gauge,
and, as we will see below, is in fact very general. As a
consequence, the final result—a relation between the in-
frared exponents of the dressed gluon propagator and the
dressed ghost propagator—should be gauge invariant, pro-
vided that the infrared exponents (which may vary from
gauge to gauge) are defined as we discuss below.

Before going into details we would like to make a
general comment about the gauge invariance. Despite the
fact that Green functions in non-Abelian theories are es-
sentially gauge-variant, their properties may be directly
linked to the confinement. The best known example of
this kind is provided by Ref. [3], which relates the linear
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confining potential increase of the color charge interaction
at large distances to cancellation of the infrared pole of the
gluon Green’s function.

At finite temperatures, the gluon propagatorDab
�� and the

ghost propagator Gab in the Landau gauge are parame-
trized by three functions DT , DL, and DG:

 Dab
���p; p4� � �ab�PT��DT�p; p4� � P

L
��DL�p; p4�	; (4)

 Gab�p; p4� � ��abDG�p; p4�; (5)

where PT�� and PL�� are projectors onto spatially transverse
and spatially longitudinal parts [11].

A conspicuous feature of the propagators is the anoma-
lous dressing of the gluon and ghost propagators in the
infrared region [6]. In the low-temperature limit

 Di�p2� � �p2��i�1Hi�p2� as p2 ! 0; (6)

where �i are infrared exponents and the functions Hi are
finite at p2 ! 0 in all the cases, i � T; L;G.

The infrared behavior of the propagators is best studied
at zero temperature. First of all, the gluon infrared expo-
nents are degenerate, �D � �T � �L. We have already
mentioned Gribov’s scenario for �D > 0 [3–5].
Moreover, according to the Kugo-Ojima criterion of con-
finement [12] the ghost propagator is enhanced in the
infrared, compared to its perturbative value:

 �D � 2�G � 0: (7)

There is some support for the validity of this relation,
both from the analytical studies of the Dyson-Schwinger
equations [6,13] and from numerical, lattice data [14,15].
However, a final conclusion on the validity of Eq. (7)
seems to not have yet been reached; see in particular
Refs. [13,16–18]. A cautionary remark comes also from
a confining Abelian gauge model where one can prove
analytically [19] that Eq. (7) does not hold.

Turning to nonzero temperatures, let us note that the
infrared properties of the gluon propagators have already
been used to study thermodynamics of Yang-Mills plasma
at T > Tc in the Coulomb gauge [20]. The idea is that
constraining the configuration space through the gauge
fixing condition leads to a change in the dispersion rela-
tions for gluons, or position of the poles of the propagator.
In the Landau gauge, a relation between the nonperturba-
tive Green’s functions and the thermodynamic potential
was discussed in Refs. [21,22]. Below we concentrate on
zeros rather than poles of the propagators and demonstrate
that zeros give rise to new T4 terms in the equation of state.

To illustrate the basic idea consider first a toy model
describing 1 degree of freedom, or a real scalar field ��x�
with a quadratic action:

 S��	 � �
1

2

Z 1=T

0
d�

Z
d3x��x�D��1��x� y���y�; (8)

where the propagator D�x� y� is defined as

 D �x� y� � h��x���y�i; (9)

and we use the imaginary time formalism. The partition
function can be calculated in the standard way [11]:

 Z �
Z
D�e�S

�2���	 � exp
�
1

2
Tr log�T2D�

�
; (10)

where we omit the irrelevant prefactor. Taking the trace
over all the states, one gets for the pressure (3)

 P � �
T
2

Z d3p

�2��3
X
n2Z

log�T2D�p; p4�	jp4�!n
; (11)

where the sum runs over the Matsubara frequencies, !n �
2�nT. The energy density is given by

 " � �T
Z d3p

�2��3
X
n2Z

@ log�p2
4D�p; p4�	

@ logp2
4

��������p4�!n

: (12)

The temperature dependent part of this sum can be
evaluated following Refs. [11,23]:

 "�T� � �
1

�i

Z d3p

�2��3
Z �i1��
�i1��

dp0fT�p0�



F�p0� � F��p0�

2
(13)

 F"�p0� �
@ log�p2

4D�p; p4�	

@ logp2
4

��������p4��ip0

; (14)

where fT�p0� � 1=�ep0=T � 1� is the Bose-Einstein distri-
bution for a particle with energy ! � p0. Equation (13) is
valid provided the analytical function F�p0� does not have
poles at purely imaginary p0. Since the integrand in
Eq. (13) is fast converging as p0 ! �1, the contour of
integration can be closed as a semicircle in the right half of
the p0-complex plane, reducing the integral (13) to con-
tribution of poles of the function F"�p0�.

Poles of the propagator D become poles of the function
F"�p0� and contribute to ��T�. This agrees with our intu-
ition since the energy spectrum of the model (8) is deter-
mined by the poles of the propagator D. However, the
crucial point is that not only the poles of the propagator but
also its zeros contribute to the energy density (13) and (14).
In fact, zeros of the propagator D become poles of the
function F"�p0� as well.

Imagine that the propagator (9) in the infrared region has
the same criticality as the gluon or ghost propagators (6) in
Yang-Mills theory:

 D��� � const�p2��=�p2 �m2�: (15)

Then we get from Eq. (14) the expression

 F���" �p0� �
!2

p

!2
p � p

2
0

� �
p2

0

p2 � p2
0

; (16)

with two poles at the Rep0 > 0 half of the complex p0
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plane, at p0 � !p and at p0 � jpj. The residues, respec-
tively, are �!p=2 and �jpj=2. The energy density (12) is

 "�T� � "free�T;m� � �"free�T; 0�; (17)

 "free�T;m� �
Z d3p

�2��3
!pfT�!p�: (18)

Here "free is the energy density of free relativistic particles
of mass m.

It is clear from Eq. (17) that the infrared suppression
(with � > 0) in the particle propagator acts oppositely to
the pole: the suppression ‘‘subtracts’’ massless degrees
of freedom (with the dispersion relation corresponding
to a relativistic massless ‘‘particle’’ !p � jpj and with
"free�T; 0� / T

4) while a pole ‘‘supplies’’ them to the spec-
trum. The same effect is also from the expression for the
pressure (11) because logD��� � � log�p2� � log�p2 �
m2�, up to a momentum-independent term. Note that a
zero of the propagator corresponds to a negative pressure
and energy density. Thus, vanishing of the propagator in
the infrared with critical exponent � acts as a ‘‘reservoir’’
for � massless degrees of freedom where the quantity � is,
in general, noninteger. As we see from our illustrative
example, the low-temperature asymptotics of the thermo-
dynamic functions are determined by the infrared behavior
of the particle propagator.

Let us now turn back to Yang-Mills theory. In the lead-
ing, one-loop approximation (in terms of dressed propa-
gators) pressure in Yang-Mills theory at vanishingly low
temperatures is given by expression (11) with

 D �p2� !

�
DL�p2�D2

T�p
2��DL�p2� �DT�p2�	

D2
G�p

2�

�
N2
c�1
:

(19)

The ghost structure function DG in the denominator of
Eq. (19) corresponds to the Faddeev-Popov determinant
which subtracts unphysical degrees of freedom. Indeed, if
one neglects the interactions, g � 0, then

 Dfree
L � Dfree

T � Dfree
G � 1=p2; (20)

and therefore the energy and pressure are given by Eq. (1)
with Nd:o:f: � 2�N2

c � 1�, as expected.
However, if one takes into account the infrared dressing

of the propagators (6), then one gets for the pressure
 

P � �2� �L � 2�T � 2�G �min��L; �T	�


 �N2
c � 1�CSBT4 � � � � ; (21)

where ellipsis denote subleading O�T	� terms with 	 > 4,
associated with cuts in the complex p0 plane. The suppres-
sion (2) of thermodynamic quantities at low temperatures
implies a relation between the infrared exponents:

 �L � 2�T � 2�G �min��L; �T	 � 2 � 0: (22)

Since the functions Hi, i � L; T;G, are regular at p2 � 0
the poles and/or zeros of these functions do not contribute
to a T4 term at very low temperatures. Indeed, poles and/or
zeros at momenta Rep0 > 0 would correspond to massive-
like contributions which are exponentially suppressed by
the Bose-Einstein factor as T ! 0.

Coming back to the question of gauge dependence of our
results, we mention that the form of the propagators (6)
assumes local Lorentz isotropy of the gauge condition at
zero temperature. However, in a general case (like, for
example, in the Coulomb gauge) and/or at a finite tem-
perature (as we discuss in detail below) the form of the
propagator is not rotationally invariant, and the rôle of the
infrared critical exponent is played by the degree � of the
zero, corresponding to the free dispersion relation pfree

0 �

jpj. In the Coulomb gauge effects of the fundamental
modular region lead to a substantial modification of the
gluon dispersion relation [20]. Namely, the relation be-
tween the energy and momentum of the gluon is no longer
linear at low momenta. Thus, the gluon’s contribution to
the equation of state in this gauge does not contain T4

terms in the limit of low temperature, in agreement with
lattice simulations [20].

The relation (22) provides a new constraint on the
critical exponents. Existing lattice data do not allow one
to check it directly. One can try to unify (21) with other
relations suggested in the literature. Assuming validity of
(7) and �L � �T we get a system of constraints which
allows one to uniquely fix all the exponents and get what
we would call a simplified solution, �D � 2=5 and �G �
�1=5.

The positivity of �D, exhibited by this solution, is con-
sistent with the infrared suppression of the gluon propa-
gator expected on other grounds [6]. Also, the ghost
exponent is consistent with the numerical result of
Ref. [17]. However, for the simplified solution the gluon
infrared exponent has too small of a value to guarantee
vanishing of the gluon propagator at p � 0. Also, the
simplified solution is in variance with results of
Refs. [13,14]. One of the reasons could be violation at
the presently available lattices of the equality �L � �T
which is granted at zero temperature. Indeed, according
to numerical results of Ref. [22] the transverse-longitudinal
degeneracy is not reached yet even at the lowest nonzero
temperatures available now. One might guess that the
discrepancy between the simplified solution and the exist-
ing simulations is rooted in the fact that the lowest cur-
rently available nonzero temperatures are still too high to
be compared with our analytical predictions.

One can ask a question whether the relation (22) be-
tween the critical exponents is affected by the presence of
quarks. As far as the quarks are massive, both numerical
[24] and analytical results [25] indicate absence of the
infrared particularities (zeros or poles) in the quark struc-
ture functions in the Landau gauge. Consequently our
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relation (22) is insensitive to the presence of the massive
quarks. This conclusion agrees nicely with the result of
Ref. [25]. However, for exactly massless quarks the T4

terms do appear in the thermodynamical quantities in the
T ! 0 limit because of the presence of exactly massless
Nambu-Goldstone particles in the spectrum. Then the
right-hand side Eq. (22) should be equal to �NNG=�N

2
c�

1�, where NNG is the number of the Nambu-Goldstone
bosons.

To summarize, the zeros in the momentum-space Green
function are as important for the thermodynamics as the
poles. Although zeros do not correspond to any states in the
spectrum they contribute to the equation of state. The
contribution of zeros in the gluon propagator to coefficients
in front of T4 terms in the energy density and pressure is
negative. This observation can be interpreted in such a way
that zeros correspond to confinement, or binding of the
originally massless gluons into massive glueballs. Zeros of
the ghost propagator, on the contrary, effectively supply
massless degrees of freedom into the equation of state.
Moreover, the very existence of the mass gap in confining
theories requires vanishing of the overall contribution of
massless degrees of freedom from the low-temperature
equation of state. Hence, there arises the constraint (22)
on the infrared exponents. Confinement resolves itself into
a new kind of analyticity.
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