PRL 100, 218701 (2008)

PHYSICAL REVIEW LETTERS

week ending
30 MAY 2008

Transient Dynamics Increasing Network Vulnerability to Cascading Failures
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We study cascading failures in networks using a dynamical flow model based on simple conservation
and distribution laws. It is found that considering the flow dynamics may imply reduced network
robustness compared to previous static overload failure models. This is due to the transient oscillations
or overshooting in the loads, when the flow dynamics adjusts to the new (remaining) network structure.
The robustness of networks showing cascading failures is generally given by a complex interplay between

the network topology and flow dynamics.
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Societies rely on the stable operation and high perform-
ance of complex infrastructure networks, which are critical
for their optimal functioning. Examples are electrical
power grids, telecommunication networks, water, gas and
oil distribution pipelines, or road, railway, and airline
transportation networks. Their failure can have serious
economic and social consequences, as various large-scale
blackouts and other incidents all over the world have
recently shown. It is therefore a key question how to better
protect such critical systems against failures and random or
deliberate attacks [1-3]. Issues of network robustness and
vulnerability have not only been addressed by engineers
[4,5], but also by the physics community [2,3,6—17]. In the
initial studies of this kind [2,6—8,15], the primary concern
was dedicated to what can be termed structural robustness:
the study of different classes of network topologies and
how they were affected by the removal of a finite number
of links and/or nodes (e.g., how the average network
diameter changed). It was concluded that the more hetero-
geneous a network is in terms of, e.g., degree distribution,
the more robust it is to random failures, while, at the same
time, it appears more vulnerable to deliberate attacks on
highly connected nodes [7,15].

Later on, the concepts of network loads, capacities, and
overload failures were introduced [9-14]. For networks
supporting the flow of a physical quantity, the removal of
a node or link will cause the flow to redistribute with the
risk that some other nodes or links may be overloaded and
failure prone. Hence, a triggering event can cause a whole
sequence of failures due to overload, and may even
threaten the global stability of the network. Such behavior
has been termed cascading failures. A seminal work in this
respect is the paper by Motter and Lai [9]. These authors
defined the load of a node by its betweenness centrality
[3,9]. Subsequent studies introduced alternative measures
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for the network loads [11] as well as more realistic redis-
tribution mechanisms [11-14].

In all studies cited above, the redistribution of loads is
treated in a time-independent or static way. We will refer to
them collectively as static overload failure models. The
load redistributions in such models are instantaneously and
discontinuously switched to the stationary loads of the new
(perturbed) network; i.e., the transient dynamical adjust-
ment towards the new stationary loads of the perturbed
network is neglected.

The aim of this Letter is to compare robustness estimates
of complex networks against cascading failures where the
dynamical flow properties are taken into account relative to
those where they are not (static case). This work does not
intend to target a specific system (or network); instead, we
aim at being as generic as possible in the choice of dy-
namical model with the consequence that particular details
and features of a specific system have to be neglected; i.e.,
we work with a minimal model as often favored in physics.
Nevertheless, the conceptually simple dynamical phe-
nomenological flow model that we propose incorporates
flow conservation, network topology, as well as load redis-
tribution features that are shared by real-life systems. On
this background, it is expected (cf. Figure 1) that the model
results will reflect some important properties of real-life
systems.

For matters of illustration and to facilitate comparison
with previous results [9-14], we have worked with top-
ologies of power transmission networks. Although our
model seems to capture stylized features of electrical net-
works (see Fig. 1), we stress that our goal is not a realistic
representation of those, nor is our model restricted to such
systems. Within the proposed model, we want to demon-
strate that time-dependent adjustments can play a crucial
role.
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FIG. 1 (color online). Comparison of the time-dependent link
loads after a triggering event (taking place at t = 0) as predicted
by state-of-the-art power simulators [(a) [25] and (b) [26]], and
the simple ““flow-conserving” model described and used in the
present Letter [(c) and (d)].

In the very tradition of physics, we use a simple flow
model with few parameters, which however considers the
network topology, flow conservation, and the distribution
of loads over the neighboring links of a node [18,19]. We
assume a network consisting of N" nodes and represent it
by a matrix W, whose entries W;; =0 (with i, j=
1,2,..., N) shall reflect the weight of the (directed) link
from node j to i (with W;; = 0 indicating no link present).
The relative weights T;; = W; j/ w; shall define the ele-
ments of the transfer matrix T, where w; = SN W, ;18
the total outgoing weight of node j [19]. These elements
describe the distribution of the overall flow (per unit
weight) c;(#) reaching node j at time ¢ over the neighboring
links i. When the flow is assumed to reach the neighboring

nodes i at time step 7+ 1, we obtain c;(z+ 1) =
ZJQXI T;jc;(1) + j; [18-20], where we have added pos-
sible source terms (j; > 0) or sink terms (j;i- <0). In
vectorial notation, the network flow equation reads

c(t+1)="Tc(r) + j5, €))

resembling Kirchhoff’s first law from circuit theory.

If j= = 0, the stationary solution to Eq. (1) is a constant
vector with components c§°>(oo) ~1//N, while with a
source term present (j= # 0), it can be expressed as
c(0) = c¢@(c0) + (1 — T)*j* with (1 —T)" denoting
the so-called generalized inverse [21] of the singular ma-
trix 1 — T. Hence, the total directed current on link j — i
at time ¢ becomes C;;(1) = W;;c;(t), from which also the
(undirected) load L;;(¢) of this link can be defined via
L;;(t) = C;;(t) + C;;(1) [22]. Closed-form expressions for
the flow dynamics at single nodes have been derived in
Ref. [20]. These allow one to study the wavelike spreading
and dissipation of perturbations in the network while prop-
agating via neighboring links, second-next, etc. (see
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FIG. 2 (color online). (a) Illustration of the dynamics of our
network flow model assuming the topology of the UK high-
voltage power transmission grid (300—400 kV) consisting of 120
geographically correctly placed nodes (generators, utilities, and
transmission stations) and 165 links (transmission lines). The
network was treated as unweighted and undirected. In our
simulations, twenty of the existing network nodes were chosen
randomly to play the role of generator (source) and utility (sink)
nodes (|nF/N| =2.5X107%), ten of each kind. In (a), the
location of these nodes is indicated by squares and diamonds,
respectively. At time ¢ = 0, before which the network loads were
in the stationary state [L; j(t < 0)], the network was perturbed by
removing a transmission line in Scotland [the dashed link
marked by O in (a)]. The resulting normalized transient link
loads, L;;(1)/L;;(t<0), are depicted in (b) and (c) for some
selected links of the UK transmission grid, as indicated in (a).
The horizontal dash-dotted lines correspond to the normalized
stationary loads of the links.
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Fig. 2). Such perturbations may result from the redistrib-
ution of flows after the failure of an overloaded link.

In the seminal work of Motter and Lai [9], failure of a
node was based on the long-term overload; i.e., a node was
assumed to fail whenever the stationary load in the per-
turbed network (considering previously broken nodes) ex-
ceeded the node capacity. The (node) capacities were
defined as 1 + « times the (stationary) loads of the original
network with & = 0 being a global tolerance factor (i.e., a
relative excess capacity or safety margin). In other words,
the evaluation of overloading was previously done after the
system relaxed, without considering the time-history of
how it got to this state (static overload failure models)
[9-14].

In this Letter, we generalize this approach towards a
dynamical overload failure model. Specifically, in our
computer simulations, we assumed a link from node j to
i to be overloaded (and to fail) whenever the time-
dependent load L;;(r) exceeded the link capacity C;; for
at least a time period 7, the overload exposure time. The
link capacities were defined analogously to Motter and Lai
[9] as

where L;; denote the stationary loads of the original
network.

In the following, we study the transient dynamical ef-
fects and overload situations that may occur before the
stationary state is reached. While for 7 = 0, a failure
results immediately after a first-time overload, 7> 0 im-
plies that the system will have to be overloaded for a
certain time period in order to cause a failure. The static
overload failure model corresponds to 7 — oo, or in prac-
tice, 7 > 7,5, where 7, denotes the transient time of the
system (the inverse of the smallest nonzero eigenvalue of
T). Therefore, the ratio y = 7/7, can be used to interpo-
late between the static (y — o0) and (instantaneous) dy-
namical overload failure (y = 0) models. While the static
overload failure model describes the upper limit of network
robustness (the best case), the dynamic overload failure
model with 7 = 0 gives the lower limit (the worst case) due
to an overshooting flow dynamics (Fig. 2). Realistic cases
are expected to lie between these two limiting cases,
corresponding to a finite value of .

Apart from network robustness to overload failures, the
value of y also determines the dynamics of failure cas-
cades. In the dynamic case with y = 0, close-by links are
more likely to be overloaded and to fail than in the static
case (y — o0). Therefore, in the dynamic scenario, one
tends to have a pronounced “failure wave” sweeping over
the network.

In order to further illustrate the difference between the
static and dynamic cascading failure models, as well as
getting a quantitative measure of the level of overestima-
tion of robustness, we investigate one of the networks
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FIG. 3 (color online). The robustness of the Northwestern US
power transmission grid [23], consisting of 4941 nodes, with an
average node degree of 2.67 (cf. also Refs. [13,15,27]). The
average fraction of links (or nodes), G(«), remaining in the giant
component of this network (after cascading) is depicted as
function of the tolerance parameter «, using the static and
dynamic overload failure models described in the text. To obtain
these results, the links were assigned weights, drawn from a
uniform distribution on the interval [1, 10], and 200 generator
and utility nodes of strength |n7"/IN| = 107% were assigned
randomly (100 of each type). The results were obtained by
averaging over all possible triggering events (single link remov-
als). The inset shows the difference, AG(«), between the static
and dynamic overload failure models.

already studied by Motter and Lai [9]—the Northwestern
American power transmission network obtained from
Ref. [23] (see also Refs. [15,23]). To evaluate the effect
of an initial network perturbation and the following cas-
cade (if any), we study the fraction of nodes and links,
Gy(a) and Gy (a), respectively, remaining in the giant
component of the network after potential cascading fail-
ures have ceased, which have been initiated by the random
failure of a link [9]. Both quantities behave similarly [24].
They are displayed in Fig. 3 for the US power transmission
network as functions of the tolerance parameter «. It has
been checked and found that our static overload failure
model well reproduces the general behavior previously
reported in Ref. [9]. Namely, global cascading failure
will occur under random attacks (or failures) mainly for
heterogeneous networks.

According to Fig. 3, there is a pronounced difference
between the static and (instantaneous) dynamic overload
failure model, corresponding to upper and lower estimates
to the network robustness. As is shown in the inset to
Fig. 3, it can be as significant as 80%, and for more
homogeneous link weights, we have found differences
even higher than 95%. Only for quite significant tolerance
factors (@ = 50%), the discrepancy between the two esti-
mates becomes insignificant. Moreover, it has also been
found that the static model tends to be more sensitive to the
location of sources (and sinks). Thus, our results show that
the role of the dynamical process taking place on the
network can be important when estimating the robustness
of networks to failures and random attacks. It is not only
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the topology of the network that matters, but also the
properties of the network dynamics as measured by y =
7/7¢. The change in one or both of them will require a new
robustness estimate.

In conclusion, we have simulated a simple network flow
model considering, besides network topology, a flow-
conserving dynamics and distribution of loads. Within
this framework, we have studied the role of the transient
dynamics of the redistribution of loads towards the steady
state after the failure of network links. This transient
dynamics is often characterized by overshootings and/or
oscillations in the loads, which may result in characteristic
“failure waves” spreading over the network. We have
furthermore found that considering only the loads in the
steady state (the static overload model) gives a best case
estimate (upper limit) of the robustness. The worst case
(lower limit) of robustness can be determined by the in-
stantaneous dynamic overload failure model and may dif-
fer considerably.

Our simple dynamical approach provides additional in-
sights into systems in which network topology is combined
with flow, conservation, and distribution laws. These are
potentially useful to understand, better design and protect
critical infrastructures against failures. For instance, over-
loads related to high electrical currents cause (through
overheating of wires) a slow spreading of failures as com-
pared to the adjustment dynamics of the currents. This
corresponds to y >> 1. In contrast, within the validity
limits of Ohm’s law, one may also use our model to mimic
effects of overloads related to overvoltages. In this case, we
have y < 1, and link failures reflect the anticipatory dis-
connection of lines to prevent damages of the network and
its components. Other examples, besides electrical power
grids, are traffic systems, where overloaded streets cause
unreasonably long travel times along links, which may be
interpreted as effective link failures. The resulting choice
of alternative routes corresponds to a rebalancing of loads
and is expected to cause transient effects, with finite values
of y.

As the model allows for effective simulations, it could
also be useful for close to real-time planning and optimi-
zation of network topologies and load sharing, particularly
for large networks. Fully realistic state-of-the-art simula-
tion tools for, say, electrical power grids that include net-
work capacities, inductors, power generation, etc., are
computationally expensive and therefore not so well suited
for real-time simulation of large networks or their topo-
logical optimization. Hence, simpler models could quickly
and efficiently give a useful overview that could serve as
the starting point for more detailed off-line simulations
using classical power network simulators.
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