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Detection of Elementary Charges on Colloidal Particles
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We have succeeded in determining the charge of individual colloidal particles with resolution higher
than the elementary charge. The number of elementary charges on a particle is obtained from the analysis
of optical tracking data of weakly charged silica spheres in an electric field in a nonpolar medium. The
analysis also yields an accurate value of the particle size. Measurement of the charge as a function of time
reveals events in which the particle loses or gains an elementary charge due to ionization or recombination

processes at the surface.
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In recent years, charged colloids with particle charges of
just a few to thousands of elementary charges have been
studied intensively. Examples are found in soft condensed
matter, where colloidal crystals of oppositely charged par-
ticles are used as a model for atomic systems [1-3], in
biophysics, where enzymatic reactions at the surface of
particles are studied by measuring the particle charge [4],
in fundamental studies of interparticle interactions [5], and
in applications such as electrophoretic displays based on
charged pigment particles [6]. For the characterization of
charged colloids, measurement techniques are available
such as acoustophoresis [7], dynamic and electrophoretic
light scattering [8], and phase analysis light scattering [9].
With these methods, average properties of many particles
are determined, but no information is obtained on individ-
ual particles. Also, due to size and charge polydispersity,
the interpretation of the results can be complicated.
Recently, optical tracking has been used to measure
charges on single particles giving detailed information on
individual particles and the distribution of particle charges
[10]. However, up to now, the measurement of charges on
individual colloidal particles with resolution higher than
the elementary charge has not been demonstrated. To some
degree, our experiments are comparable with the experi-
ment of Millikan almost 100 years ago [11] in which the
elementary charge was determined by using liquid drops in
an electric field in air. This method has been optimized and
is now used in the search for fractional charges [12].
Finding the elementary charge in a liquid is much harder,
because of the higher viscosity, which reduces the motion
of weakly charged particles in an electric field to a value
which may be below the sensitivity of most measurement
systems or difficult to separate from Brownian motion. In
this work, we use optical tracking electrophoresis and
analysis of multiple mobility measurements to obtain the
number of elementary charges on colloidal particles carry-
ing only a few elementary charges in a nonpolar medium.
We demonstrate that our method allows monitoring of
single ionic reactions at the particle surface and precise
measurement of the particle charge and size. This approach
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opens possibilities for the characterization of colloidal
particles, the (dynamic) study of charging mechanisms,
the monitoring of chemical or electrochemical reactions,
and the detection of (bio)molecules bound to particles.

In our study, we use spherical silica particles (Mo-Sci)
with radius 1.05 £ 0.05 pwm in the nonpolar solvent do-
decane (Rectapur, VWR) at volume fractions below 0.01.
Because of the low dielectric constant (¢ = 2) and the
large Bjerrum length (28 nm) of dodecane, individual
charges are very rare [13]. As a result. also the charge of
the silica particles in dodecane is low: For 120 particles,
the charge determined by standard electrophoretic mea-
surement [14] was in the range between —70e and +20e,
with e the elementary charge. This is more than 100 times
smaller than in water (¢ = 80) [15]. Because of the low
charge concentration, electro-osmosis can be neglected.

We use a standard optical electrophoresis setup [16] to
track individual particles while they are moving in an
electric field generated by applying a square wave voltage.
The optical system consists of an optical microscope and a
CCD camera, with a total optical magnification of
169.5 nm per pixel on the CCD camera. A square wave
voltage of amplitude V = 100 V and frequency 2 Hz is
applied over the electrodes. Since parallel electrodes are
used, the amplitude of the electrical field E is simply E =
V/d, where the distance d is determined by measuring the
number of pixels between the electrodes, a typical value
being 80 wm. The amplitude of the electrical field is there-
fore about 10° V/m. Images are taken at 20 Hz, and image
analysis based on the particle centroid results in an accu-
racy of about 20 nm. During each half period of the square
wave voltage, the electrophoretic mobility w of a particle is
determined as its speed along the direction of the field
(Ax/Ar based on two samples with Ar = 0.15 s) divided
by the amplitude of the electrical field. The particle posi-
tion along the field as a function of time has roughly a
triangular shape [Fig. 1(a)]. The position perpendicular to
the field is governed by Brownian motion. Typically,
120 values of the electrophoretic mobility are calculated
for each particle over a period of 30 seconds [Fig. 1(b)].
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FIG. 1. Electrophoretic measurement of a silica particle in
dodecane. (a) The particle position (x, relative to the initial
position) during the application of a square wave voltage,
resulting in a typical triangular shape with changing amplitude
as the particle charge changes (indicated by arrows). The
Brownian motion in the y direction perpendicular to the field
(with chosen initial position 5 um) is unaffected by the field.
(b) The 120 corresponding mobilities are shown, and guidelines
indicate multiples of the elementary mobility f,. (c) Histogram
of the electrophoretic mobility showing peaks at multiples of the
elementary mobility. The right axis indicates the number of
elementary charges.

We will now verify that elementary charges are resolved.
The electrical charge Z (in units of e) of a spherical particle
in the absence of an electrolyte can be calculated from the
electrophoretic mobility with the Stokes-Einstein relation:

u = Ze/6mna, (D

with a the hydrodynamic radius of the particle and 7 the
viscosity of the solvent. The Debye length in our silica
suspensions is larger than 10 um, so the Hiickel limit can
be used for 1 wm particles [17]. From the known radius
a=1.05 um and n = 1.38 X 1073 Pas, we obtain u =
6 X 10712 m> V~1s~! for a particle carrying a unit charge.
This value agrees well with the distance between the peaks
in the experimental histogram of the electrophoretic mo-
bility [Fig. 1(c)]. The peaks in the mobility histogram
indicate that the particle charge Z varies in discrete steps
and confirm that the elementary charge is resolved.

There are two disadvantages of using Eq. (1) to calculate
the particle charge. First, the particle size is in many cases

not accurately known (in our case, only the average size is
provided by the manufacturer). Second, the accuracy of a
mobility measurement is limited by inherent Brownian
motion. The standard deviation (o ,) for the measured
electrophoretic mobility values can be estimated as:

1 2D

which is the ratio of the mean displacement in one dimen-
sion due to Brownian motion v2DA¢t [16] over the field-
induced motion wEA¢, multiplied with w. Here D repre-
sents the self-diffusion constant of the particle.

We will now show how a detailed analysis of multiple
mobility measurements can yield highly accurate values of
the particle size and the particle charge as a function of
time, without using Eq. (1), but by taking advantage of the
discrete nature of the electric charge and the known value
of the unit charge. In a typical experiment, M mobilities u;

(with i =1,..., M) are measured on a single spherical
particle of unknown radius a that can be modeled as
Mi=Zp, t e (3)

Here Z; are integers representing the discrete charge in
units of e, u, is the elementary mobility of a particle with
radius a and charge e, and ¢; is the error on the measure-
ment. We assume that the error g; due to Brownian motion
or measurement limitations is uncorrelated and normally
distributed, with average 0 and variance o>. We want to
find estimations for the elementary mobility fi,, the num-
ber of charges Z, the variance 42, the particle size a, and
the diffusion constant D (with * referring to estimated
values). If o is small compared to u,, the values wu; will
be clustered around multiples of the elementary mobility
M, as illustrated in Fig. 1(c). If the condition &; K u, is
fulfilled, we find with Eq. (3) that Z; = u,/u, and, since
Z; is an integer, that Z; = [w,;/u,], where the brackets
mean rounding to the nearest integer. We can then rewrite
Eq. (3):

wi = i/ melp, = & < . “4)

Now we evaluate the function R?(w), which is the sum of
squares of the residuals &; from Eq. (4) where we replace
the unknown value of w, by u:

M
R(p) = D (i = [pi/ mlw)*. (5)
i=1

For completely random mobility data, the sum of squares
in Eq. (5) has an expectancy M u?/12. If the mobility data
are clustered around multiples of u,, we expect R*(w) to
be significantly smaller than M u?/12 for the value of u,.
Therefore, the elementary mobility £, should correspond
to a local minimum in R*(u). In practice, we determine
searching intervals satisfying R?(u) < 0.7 X Mu?/12 and
calculate the lowest local minimum. Another method
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FIG. 2. Analysis of the electrophoretic mobilities from
Fig. 1(b). R*(u) from Eq. (5) is shown for the experiment in
Fig. 1, with M = 120. The straight line shows the quadratic
expectancy Mu?/12 for random mobility data and M = 120.
Values of the experimental curve that are below this quadratic
trend indicate a clustering around multiples of the corresponding
mobility u. ft, is determined as the local minimum indicated by
the double arrow. The minimum, maximum, and average of the
absolute value of the measured mobilities are also indicated.

would be to determine an approximate value of w,, for
instance, by analyzing the Brownian motion in the y di-
rection, and to locate the closest local minimum. Figure 2
shows R?(u) using the mobilities from Fig. 1(b) with
M = 120. For this experiment, we find 4, = 6.18 X
1072 m?>V~!s7!, and the corresponding error is about
0.05 X 1072 m?> V™! s7! (see below). The detailed shape
of R?(u) depends on the values of Z; that have occurred
during the experiment. For values of w higher than 2 X
max(|u;|), R?(u) becomes constant as expected.

Once [, is known, accurate estimations can be made of
the particle radius & = e/67 i, and the diffusion con-
stant D = f1,kT/e using the Stokes and Einstein relations,
with k the Boltzmann constant and 7 the absolute tem-
perature. Each measured mobility u; corresponds to an
estimation of the number of elementary charges Z; =
i/ k., which is, in general, not an integer, due to the
measurement error in u,. Since the charge is a multiple
of the elementary charge, we find the most probable value
of Z by rounding to the nearest integer: Z; = [u;/{,]. For
particles with a given standard deviation of the mobility o,
the fraction of correctly estimated values Z; = Z; is given
by erf(u,/+/8¢). In our experiments, this fraction is typi-
cally 98% (for 2% of the estimations, the error is one unit:
7= Z; * 1). The variance of the error g, is calculated
as 62 = S (u; — Zif2,)?/(M — 1) and is related to the sum
of squares of the residual mobility in (5) by &2
Rz(lae)/(M - 1)

The histogram in Fig. 3 is obtained by using the
1200 values of Z; = u;/ 1, for 10 particles, where f, is
the value determined for the corresponding particle. It
illustrates the clustering of data around whole numbers,
but, because of the limited number of particles, it does not
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FIG. 3. High resolution charge histogram. The 1200 measure-
ments on 10 particles of the charge Z; = u;/ft, show peaks in
the charge histogram at multiples of the elementary charge e.

represent the true particle charge probability distribution.
The charge on the silica particles is between —12¢ and
+10e, and there is about one exchange (*e¢) per second
with a decrease (—e) being slightly more frequent (58%)
than an increase (42%). Such fluctuations cannot be ob-
served with conventional methods that average over large
numbers of particles and/or longer time intervals. The
principle charging mechanism for silica particles in water
is dissociation of silanol groups [15]: SIOH=SiO~ + H*.
In nonaqueous media such as dodecane, the charging
mechanism of silica particles is not fully understood
[13]. Probably the mechanism is similar, but charging
events are less frequent in nonpolar media due to the
stronger electrostatic interaction between charges.

Analysis of the error on [, and the calculated properties
that are derived from it is quite complicated and depends
on the values Z; and o/u,. In the theoretical limit
o/ u, < 1, the overlap between the peaks in the mobility
histogram is negligible, and the charge is always estimated
correctly: Z; = Z;. In this case, the variance 0'%16 of 4, can
simply be obtained by using the (Z;, ;) data and applying
standard linear regression theory:

o} =0’ / Zz%. (6)

In our experiments, the typical value of o/u, is 0.21,
which is not negligible compared to 1, so we expect the
variance to be larger than the formula given in (6). We
estimate the variance on £, (denoted &fzﬂ) by constructing

100 sets of randomly generated mobility data (also con-
taining 120 values per series) according to the normal
distribution N(Z;@,, 62), by using the values of f,, Z;,
and & calculated from the experiment. Then we use the
described algorithm to calculate R*(u) and estimate the
elementary mobility for each of the 100 data sets. The
standard deviation of the 100 values of the elementary
mobility obtained in this way is defined as 6, and is in

M(‘
our experiments typically 20% higher than Eq. (6). Typical
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TABLE I. Measurement results for 3 silica particles in dodec-
ane. The results for particle 1 are obtained from the data in
Figs. 1 and 2. The values of i, &ﬂ(‘, o, and oy in the table have
to be multiplied by 10712 m> V=571,

Pe® 0, a (um) b ou LA/M)Y 22
6.18 £0.05  0.996 £0.008 130 1.32 2.76
6.10+0.01  1.009 0002 1.16 125 8.43
597+0.02 1.032=0.003 124 1.17 9.08

values for & /fi, in our experiments are between 0.2%
and 2%.
We have listed the resulting properties ., 64, , a, &,

o, and \/(1/M) ™, Z} for 3 particles in Table I, each
determined from M = 120 mobility measurements. The
resulting particle sizes are in the range specified by the
manufacturer. The accuracy of the particle size measure-
ment of a few nanometers is sufficient to reveal small
variations in the sizes of the particles. Notice that the
accuracy of the elementary mobility measurement (5, =~
5% 107" m?2V~1s1) is about 30 times higher than the
accuracy of a single mobility measurement (& =
1.3 X 1072 m? V~!'s71). The accuracy is higher if the
value of /(1/M)Y ¥, 72 is larger, which can be under-
stood from Eq. (6). The values & and o, are approximately
the same, indicating that Brownian motion is the main
source of error. Because we use monodisperse particles
with known average size a = 1.05 um, we can combine a
with [, to estimate the elementary charge: é = 6mnaj,.
The value for the elementary charge for 10 particles é =
(1.64 = 0.05) X 10~ C corresponds with the well known
value for e.

The accuracy of the method can be optimized by in-
creasing the number of measurements per particle and by
minimizing the error of a single mobility measurement as
can be seen from Eq. (6). Since Brownian motion is the
main error contribution to the mobility measurement, the
latter can be achieved by making o, small compared to
M.. As can be seen from Eq. (2), this can be achieved by
increasing the electric field (while avoiding electrochem-
ical reactions) and the measurement time (not above the

typical time for charge exchange) and by using small
particles. In polar media, the detection of single charges
may be more difficult and require smaller particles, higher
frequencies, and/or faster detection.

In conclusion, we have demonstrated that the number of
elementary charges on a particle, the particle size, and the
occurrence of single ionic reactions at the surface can be
measured for weakly charged particles in a nonpolar liquid.
This method can be used for characterizing weakly
charged colloids—especially in nonpolar media—and
for studying fundamental electrokinetic phenomena. This
method may find useful applications in colloid chemistry
and single molecule biology, where the binding of single
biomolecules on the particle surface can be detected [18].
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