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We consider self-propelled particles undergoing run-and-tumble dynamics (as exhibited by E. coli) in
one dimension. Building on previous analyses at drift-diffusion level for the one-particle density, we add
both interactions and noise, enabling discussion of domain formation by ‘‘self-trapping,’’ and other
collective phenomena. Mapping onto detailed-balance systems is possible in certain cases.
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Several species of bacteria, including Escherichia coli,
perform self-propulsion by a sequence of ‘‘runs’’—peri-
ods of almost straight-line motion at near-constant speed
(v)—punctuated by sudden and rapid randomizations in
direction, or ‘‘tumbles,’’ occurring stochastically with rate
�. It is no surprise that the resulting class of random walk
gives a diffusive relaxation of the number density at large
scales [1]. The resulting diffusion constant�v2=� is vastly
larger than that of nonswimming particles undergoing pure
thermal motion at room temperature. Therefore, apart
from, e.g., the upper limit it imposes on the duration of a
straight run (set by rotational diffusion), true Brownian
motion can usually be ignored.

Because bacterial diffusion is not thermal, the steady-
state probability density cannot be written as ps /
exp��H=kBT�, with H a Hamiltonian, even for a single
diffuser. The physicist’s intuition can easily be led astray:
for instance, Refs. [2–4] address models (of chemotaxis)
comprising noninteracting particles in 1D, with no external
forces, but v�x�; ��x� functions of position x. Instead of a
uniform density, as would arise with any force-free
detailed-balance dynamics, one finds ps�x� / 1=v�x� [2].

Here we extend previous analyses of run-and-tumble
motion to the many-particle level, addressing the roles of
noise and interactions. These determine, for instance, the
dynamic correlator of run-and-tumble bacteria, which is
measurable by light scattering at low density [5] and at
higher density, in principle, by particle-tracking micros-
copy [6]. Additionally, particles for which v; � depend on
the local density (either via thermodynamic interactions
such as depletion [7] or kinetic effects such as collision-
induced tumbles) could show collective phenomena such
as domain-formation or flocking. Such effects have previ-
ously been addressed within models where a self-propelled
particle responds vectorially to the velocity of its neigh-
bors, by direct sensing or passive hydrodynamics [8–10].
Below, we shall find, for run-and-tumble dynamics, similar
effects in even simpler cases when only the speed of a
particle is density-dependent.

In making the transition from a single particle to many,
most bacterial modeling approximates the number density
by a simple replacement � � Np [3,4]. But even for non-
interacting particles, � (unlike p) is a fluctuating quantity,

and a full statistical mechanics must compute noise terms
for �. As seen below, these are not ad hoc, but follow from
the run-and-tumble dynamics directly.

To allow relatively rigorous progress we work in 1D
throughout. For d > 1, although good descriptions exist at
the one-particle level [3,4], we leave many-body effects to
future work. To avoid unwieldy equations for the proba-
bility flux J, we assume that, in units where run-and-
tumble parameters such as v;� are O�1� quantities, spatial
gradients of these and of J are� 1. (We show below that
this was also implicit in [3].) This restriction also judi-
ciously avoids complicated memory effects arising from
the time-retarded response function of bacteria [1,11] that
can lead to much reduced universality [12].

We start below with the microscopic dynamics of a
single particle. We show how, on large scales, its proba-
bility density is governed by a drift-diffusion equation,
whose Langevin counterpart we then extend to describe
the time evolution of the particle density in an assembly of
interacting run-and-tumble particles. We then illustrate
some dramatic consequences of these interactions and
finally address the role of external fields such as gravity.

Let us define R�x; t�; L�x; t� the probability of finding a
single run-and-tumble particle at x; t in a right- or left-
moving state [13], respectively. With discrete run speeds
vR;L and R$ L, and interconversion rates �R;L=2 that
depend on x, we have (with prime denoting @x)

 

_R � ��vRR�0 � �RR=2	 �LL=2 (1)

 

_L � �vLL�
0 	 �RR=2� �LL=2 (2)

 _p � �J0: (3)

Equation (3) sums (1) and (2), to relate the single-particle
probability density p 
 R	 L to its current J 
 vRR�
vLL. Noise is not present in (1) and (2), which already
represent an exact master equation for the dynamics of one
particle.

The diffusive limit is found by a second time differen-
tiation, elimination of R;L and their derivatives, and set-
ting �p! 0 [3,4]. The outcome can always be viewed as a
time-local ‘‘constitutive’’ relation J � J�p�x�� for use with
the continuity equation (3). J, though linear in p, need not
be local in space; in fact, setting �p � 0 (which implies
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_J � 0) gives the differential equation (with 2v 
 vL 	 vR
and 2� 
 �L 	 �R):

 �1	 �1�J	 �2J0 � J (4)

 J 
 �Dp0 	Vp; D 
 vRvL=� (5)

 V 
 ��LvR � �RvL�=2�� v�vRvL=v�0=� (6)

 �1 
 �vR�vR=v�
0 � vL�vL=v�

0�=2� (7)

 �2 
 �vR � vL�=�: (8)

An explicit nonlocal form J�p� is readily found from (4).
By neglecting J0 in (4), we instead obtain the local form
J � J =�1	 �1� which is valid as long as V =D is itself
small, a condition that must anyway hold if our diffusion-
drift description is to avoid large p gradients in the flux-
free steady state ps�x�. The latter obeys V =D � �lnps�

0,
which follows exactly from (1) and (2). Our local approxi-
mation reduces to that of Schnitzer [3] on further neglect-
ing �1. While the latter maintains ps exactly, by retaining
�1 we extend this exactness to all steady states (J0 � 0).

We thus write as an optimal local approximation

 _p � �J0; J � �Dp0 	 Vp; (9)

with D 
D=�1	 �1� and V 
 V =�1	 �1�.
To analyze the more complex physics arising at many-

body level, we first exactly recast (9) as an Ito-Langevin
process for a trajectory xi�t�:

 

_x i � A�xi� 	 C�xi�Li�t�; (10)

with Li�t� unit-variance Gaussian white noise, C2 � 2D,
A � V 	 @D=@xi, and C;A evaluated at the start of each
time increment [14]. The latter (Ito) prescription eases the
extension to many particles xi�t� whose parameters
vR;L; �R;L depend on position, not only explicitly as in
(10), but also implicitly via the particle density. The latter
is formally constructed as ��x� �

P
i�i�x� �

P
i��x� xi�;

a coarse-grained version (compatible with a gradient ex-
pansion) is found by choosing a smoothed function for
�i�x�. Within Ito’s formulation [14], no further account
need now be taken of the time dependence of �: despite
interactions, the random displacements C�xi�Li�t��t de-
pend only on the preceding ��t� and are statistically inde-
pendent of each other [15].

Accordingly, we can read Eq. (10) as the Ito-Langevin
equations for many interacting particles i � 1; . . . ; N, with
A � A�x; ���� and C � C�x; ���� [16]. From these, the Ito-
Langevin equation for the collective density ��x� is found
by standard procedures [17], as follows. Ito’s theorem [14]
states that for any function f�xi� of one variable

 

_f�xi� � �A	 CLi�@f=@xi 	 �C2=2�@2f=@x2
i (11)

 �
Z
�i�x; t���A	 CLi�f0 	Df00�dx: (12)

Integrating (12) by parts and using the identity _f�xi� 
R
_�i�x; t�f�x�dx gives

 _� i � ��A�i�
0 	 �D�i�

00 � �LiC�i�
0: (13)

Summing on i we obtain for the collective density [16]

 _� � ��A��0 	 �D��00 �
X
i

�CLi�i�0 � �J0C (14)

 JC � �fV 	 ��=���0Dg �D�0 	 �2D��1=2�; (15)

with h��x; t���x0; t0�i � ��t� t0���x� x0� [17–19]. In
(15), � is to be read as a coarse-grained, locally smooth
field. Again by standard methods (but avoiding any appeal
to detailed balance) [20] the Fokker-Planck equation for
the many-body probability P ��� then follows as

 

_P �
Z
dx

�
���x�

@x

�
�V �D@x��D�

�
@x

�
���x�

��
P

(16)

Allowing that V;D are now functionals of �, we next
seek conditions under which we can map (16), or equiv-
alently (10), onto a thermal system with detailed balance.
(Clearly we require no macroscopic flux, hJCi � 0.) In
such a system, forces derive from an excess free energy
F ex���, diffusion and mobility matrices obey the Einstein
relation Dij � �ij, and steady-state probability obeys
P s��� / e

�F ��� with F ��� � F ex 	
R
��ln�� 1�dx.

(We set kBT � 1 without loss of generality.) Since in
(10) the Li for different particles are independent, Dij is
diagonal [15]. Hence the required condition is simply

 V����; x�=D����; x� � ���F ex���=���x��
0; (17)

where the right-hand side represents the force (i.e., excess
chemical potential gradient) on a particle at x.

For 1D noninteracting particles, (17) always holds, with
F ex �

R
F�x���x�dx and F�x� �

R
V�x0�=D�x0�dx0. For

instance, when vL � vR � v�x� and �L � �R � ��x�,
one has [3,4] F�x� � lnv�x� so that the mean steady-state
density obeys �s�x� � �s�0�v�0�=v�x�. For interacting par-
ticles, existence of F ex is not generic even in 1D, as the
configuration space is Nd-dimensional. Nonetheless, some
interesting cases do admit an F ex. In particular, whenever
V � �s1����0 and D � s2���, with s1;2 depending locally
on � only, then V=D satisfies (17) with F ex �

R
s3���dx

and s3��� obeying s2d2s3=d�2 � ds1=d�.
For example, consider a translationally invariant dynam-

ics in which vR;L; �R;L at x depend on ��x�; �0�x�; . . . , with
even parity: ��x� $ ���x� induces �L�x�; vL�x� $
�R��x�; vR��x�. Then ��F ex���=���x��

0 � �	
�ln�vRvL=v��

0, where � 
 ��RvL � �LvR�=2vRvL. On
symmetry grounds, � must vanish when all odd derivatives
of � do so; thus to leading order in gradients we can write
� � � ����0. Likewise vR;L � v / ��0 so we can write
�ln�vRvL=v��0 � �lnv����0 to leading order. Thus we re-
cover F �

R
f���dx �

R
���ln�� 1� 	 fex����dx, with
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 fex��� �
Z �

o
� �u� 	 lnv�u��du: (18)

To leading order in gradients, this system is then equiva-
lent to a system of Brownian particles at kBT � 1, with
mobility matrix Dij � �ijv2���xi��=����xi��, and a local
free energy density f���. Thus, according to mean-field
theory [18], whenever

 

d2f

d�2
�

1

�
	

d
d�
� ��� 	 lnv����< 0 (19)

the system is locally unstable toward spinodal decomposi-
tion into domains of unequal density �. Also, it is globally
unstable to noise-induced (nucleated) phase separation
whenever � lies within a common-tangent construction
on f��� [18,19]. In particular, for  � 0 (left-right sym-
metry), any system with dv=d� <�v=� is liable, by the
above reasoning, to undergo phase separation. Since one
result of finite tumble duration is effectively to reduce v
[13], a strong enough tendency for the duration of tumbles
to increase with density may have similar effects.

In practice, of course, the very existence of a thermody-
namic mapping in this (strictly 1D) system ensures that the
bulk phase separation predicted by mean-field theory is
replaced by Poisson-distributed alternating domains of
mean size / e�. Here � is a domain-wall energy, fixed
by gradient terms—if these remain compatible with the
existence of F ex (which is not guaranteed). To gain a first
estimate of such gradient terms (retaining  � 0) we
choose a model where, in a uniform system, v��� �
v0e��� with � a constant. Now we argue that the depen-
dence v on � is somewhat nonlocal, sampling � on scales
� of order the run distance, v=�, which isO�1� in our units.
We therefore write for the nonuniform case v � v�~��
where ~� � �	 �2�00. (A linear term is forbidden by sym-
metry.) Thus �F ex=���x� � lnv � lnv0 � ���	 �

2�00�
and

 fex��; �
0� � � lnv0 	 ����

2 	 �2�02�=2: (20)

The resulting f��� is very familiar [19], and locally
unstable for all � � 1=�. A stable dense phase is however
regained if v��� saturates at large �. Suppose, e.g., v �
v0 exp���’ arctan��=’��, which falls as v0e

��� before
approaching vsat � v0 exp���’�=2� at �
 ’. So long
as ’> 2=�, a window of phase separation is maintained in
mean field. Notably, some of the gradient terms arising
from (the above form of) nonlocality now violate our
thermodynamic mapping. However, if one ignores such
violations, � is found to be large, and domain formation
accordingly pronounced, whenever ’
 1.

Although rigor is now exhausted, the physics seems
reasonable: we know [2–4] that for an imposed v � v�x�
particles accumulate in regions of low v. Thus with dv=d�
sufficiently negative, ‘‘self-trapping’’ of high-density,
slow-moving domains can be expected. To investigate
whether this scenario arises, we have simulated Eq. (10)
for the above conditions and indeed observed the predicted

spinodal dynamics (Fig. 1). Moreover, if we create a fully
phase-separated initial state, this shows prolonged stability
when the mean density lies between the predicted binodals;
outside these, it collapses to uniformity. Thus the self-
trapping scenario appears valid despite violations of our
thermodynamic mapping at gradient level. Equations (14)
and (15) generalize obviously to d > 1, where they would
lead to genuine phase separation under similar conditions.
However, an adequate local approximation relating A;C to
run-and-tumble parameters remains to be established, and
the range of validity of the diffusive limit is unknown. In
d > 1 additional physics also enters, such as hydrodynamic
interactions which are only partially accounted for by our
use of a density-dependent velocity field [10].

Finally, let us consider a translationally invariant system
with no density dependence of � nor of v, but where vL;R
are biased by some colloidal interaction Hint. That is,
vR;L�x� � v� vT , with vT � ��T��Hint=���x��

0 and
�T the mobility (inverse friction) [7]. To first order in
small vT we then have V � vT and D � v2=�. The latter
swamps any small thermal contribution (DT � kBT�T), so
that (10) and (16) are, to this order, equivalent to a ther-
modynamic system with Hint, but at enhanced temperature
kBTeff ’ D=�T . Correlators such as S�q; t0 � t� 

h�q�t���q�t

0�i follow, although in many cases Teff may
be so large that these approach the noninteracting limit,
S�q; t� � N exp��Dq2t� [21]. A similar expansion shows
Teff also to control sedimentation equilibrium under weak
enough gravity (H � Hint 	mg

R
��x�xdx).

For the chosen �-independent v and �, this effective
temperature picture is intuitively clear and appealing.
Nonperturbatively, however, V � vT 	 �v2

T�
0=� and

D � �v2 � v2
T�=�. Since vT � vT���, Eq. (17) no longer

holds: the effective temperature concept breaks down as
soon as the colloidal or gravitational interactions are non-
infinitesimal. (This is true even within the gradient expan-
sion, which itself fails at vT=v ’ 1.) Perhaps instructive is
the exactly solved case of noninteracting sedimentation,

FIG. 1 (color online). Spinodal-like behavior of 6400 interact-
ing particles within the region where d2f=d�2 < 0. In the
numerics, ~� is defined by convolution of � with a smooth
function of finite range �1=2; we set v0 � 2:5, � � 0:01, ’ �
250. The box length is 16, with periodic boundary conditions,
and the mean density is 400. Dashed lines show the common-
tangent densities (� � 60; 800).
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where vT � ��Tmg. This gives in steady state a
Boltzmann-like exponential density, �s�x� � ��0�e�	x,
whose spatial decay rate 	 � �vT�=�v2 � v2

T� is, how-
ever, nonlinear in g [22]. On increasing g, the density
profile collapses to zero height, not when g! 1 but
when vT�g� ! v. Although cut off by other physics
(such as true Brownian motion) this finite-g singularity
occurs because for jvT j> v, L and R particles move in the
same direction: a steady state of zero flux is clearly then
impossible. Strong colloidal forces may likewise create
absorbing states whose local ‘‘escape velocity’’ exceeds
v. This conclusion would alter if v represented not a fixed
value but the mean of a distribution extending (as in a truly
thermal system) to unlimited speeds. Existence of a strict
upper limit to the speed of self-propelled particles could
thus be an important factor in their physics.

In summary, by considering the passage from local run-
and-tumble to drift-diffusion dynamics at large scales, we
have elucidated the roles of both noise and interactions.
When the mean run speed v is a sufficiently decreasing
function of local density (or tumble time 
 sufficiently
increasing [13]), purely kinetic interactions could cause
‘‘self-trapping’’ of domains in 1D, suggestive of bulk phase
separation in higher dimensions. For particles interacting
not by kinetic but by conventional thermodynamic forces
(creating local drift velocities superposed on a density-
independent run-and-tumble dynamics), such a mapping
gives, perturbatively, an effective temperature set by the
ratio of the run-and-tumble diffusivity to the thermody-
namic mobility. However, this mapping breaks down as
soon as the drift velocities vT arising from the interactions
become a significant fraction of the run speed v. For jvT j>
v, and in the absence of true Brownian motion, absorbing
states are possible.

Because of the progress it allows, we have focused
above on those exceptional cases that, despite nonequilib-
rium interactions and noise, admit a thermodynamic map-
ping. Accordingly, large areas of parameter space remain
unexplored; these could harbor many further interesting
forms of collective nonequilibrium behavior.
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