
Fractal Substructure of a Nanopowder

Thomas Schwager,1 Dietrich E. Wolf,2 and Thorsten Pöschel3
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The structural evolution of a nanopowder by repeated dispersion and settling can lead to characteristic
fractal substructures. This is shown by numerical simulations of a two-dimensional model agglomerate of
adhesive rigid particles. The agglomerate is cut into fragments of a characteristic size ‘, which then are
settling under gravity. Repeating this procedure converges to a loosely packed structure, the properties of
which are investigated: (a) The final packing density is independent of the initialization, (b) the short-
range correlation function is independent of the fragment size, (c) the structure is fractal up to the
fragmentation scale ‘ with a fractal dimension close to 1.7, and (d) the relaxation time increases linearly
with ‘.
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The van der Waals attraction between nanoparticles is
much stronger than their weight. This is the reason why
they agglomerate into ramified, often fractal structures [1].
A well-studied example are the agglomerates formed in a
filter that collects nanoparticles. Once the particle deposits
have grown to micrometer size, they can be shaken off the
filter fibers easily. Collecting these rather large aerosol
flakes in a container leads to what is commonly called a
nanopowder, a fragile assembly of partly sintered mi-
crometer flakes made of nanoparticles. Depending on the
agglomeration process in the aerosol, as well as the influ-
ence of diffusion on the deposition process, the nanopow-
der will have fractal substructures [2]. However, it may be
questioned whether these are robust: Shaking, pouring,
stirring, and all kinds of random treatments of the container
will break the nanopowder up into fragments, presumably
with a typical size determined by the prevailing shear
forces and much larger than the primary nanoparticles,
but not necessarily larger than the originally collected
aerosol flakes. When allowed to settle, these fragments
will reagglomerate, until the next perturbation breaks the
nanopowder up again.

Nanopowders can be enormously porous. Porosities of
more than 90% are common. Since many physical proper-
ties, such as electrical conductivity, mechanical stability, or
catalytic activity are determined by the structure of the
powder, it is important to know whether there emerge
robust generic structural features as a result of repeated
fragmentation and reagglomeration processes. In this
Letter we present large-scale simulation results for a sim-
ple two-dimensional model which shows such a develop-
ment of a robust asymptotic structure.

In our model the nanoparticles are represented by up to
3� 106 discs with a narrow size distribution (10% vari-
ance). The initial state was a densely packed agglomerate.
Below we will show that the final structure is independent
of the initial configuration. Then the following procedure is

repeated many times: First the agglomerate is cut with a
square mesh into portions. The linear mesh size ‘ can be
viewed as the typical scale of the fragmentation process. A
portion may consist of several disconnected fragments.
These fragment flakes then settle as rigid bodies under
gravity without taking adhesion forces with other particles
into account. This is justified, if the flakes are sufficiently
large, so that their weight exceeds the van der Waals force
between the nanoparticles [3]. Brownian motion is ne-
glected for the same reason. After this reassembly of the
fragments the agglomerate is cut again with the square
mesh, and so on; see Fig. 1.

The only model parameter is the linear mesh size ‘. Note
that the limit of small ‘ (‘ � particle diameter) corre-
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FIG. 1 (color online). Evolution of the packing of a nano-
powder as described in the text. (a) Initial packing generated
by random sequential sedimentation [4]. The packing is cut by a
square mesh into fragments (‘ � 20); (b) The fragments are
considered as rigid bodies and deposited (1st generation). Again
the packing is cut by the square mesh (here not shown); (c) the
fragments are deposited again (2nd generation), and so on;
(d) 3rd generation; (e) 4th generation; (f) 120th generation.
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sponds to noncohesive primary particles. In any case, the
cohesion forces are assumed to be weak compared to the
fragment weight, but strong enough to assure the internal
stability of the flakes.

Algorithm.—To obtain statistically significant results for
the structure of nanopowders one has to consider systems
with more than 1� 106 particles for many fragmentation-
reagglomeration cycles. This is beyond the capability of
molecular dynamics simulations. For our purpose we
therefore generalized a model by Visscher and Bolsterli
[4] originally intended for the sequential deposition of
macroscopic spherical particles (see [5–9] for other appli-
cations): Each particle starts at a random position well
above the already deposited material (the configuration
of which is regarded as frozen in). Following gravity, it
moves downwards until it touches the bottom of the con-
tainer, where it sticks, or contacts another already depos-
ited particle. In the latter case it moves, again following
gravity, on the surface of the deposit until it either touches
the bottom or finds a stable position in contact with the
walls and/or previously deposited particles (for more de-
tails see [10]).

We generalized this algorithm in order to apply it to the
fragments of a nanopowder. In each iteration step we
inspect the portions which are cut out by the square lattice,
Fig. 1, with respect to their connectivity. A portion may
decompose into several fragments (i.e., clusters of con-
nected nanoparticles). We deposit these fragments in a
random sequence in the same way as described above. A
fragment rolls down the surface of the deposit until the
vertical projection of its center of mass falls in between
two points of contact. As in the original algorithm, inertia
is neglected, which in contrast to previous applications is
less of a problem here, because the dynamics of nano-
particle flakes is usually strongly damped. In the following,
lengths are given in units of the average particle radius,
masses in units of the particle mass, and time as number of
fragmentation-reagglomeration cycles.

Asymptotic filling height.—The original Visscher-
Bolsterli algorithm produces random dense packings of
spheres without fractal substructures. Correspondingly,
our generalization produces a packing of fragments that
is homogeneous on scales larger than the fragmentation
length ‘, as can be seen in Fig. 1(f). Surprisingly, however,
the short-range structure up to size ‘ develops robust
fractal properties. A first indication is given by the
‘ dependence of the filling height.

Starting from a random dense packing of primary parti-
cles the filling height increases towards a saturation value.
Asymptotically, the powder adopts a very porous, statisti-
cally invariant structure, which is robust with respect to
fragmentation at a fixed scale and subsequent gravitational
settling of the fragments. Remarkably, the asymptotic fill-
ing height does not depend on the initial configuration:
Starting with all particles arranged in a single vertical
needlelike chain leads to the same value (see Fig. 2).
Except for the first point (the initial condition) the filling

height hn at iteration step n can be fitted by an exponential
approach of the asymptotic height h1 with a relaxation
time nc,

 hn � h1�‘� � �h1�‘� � h0� exp��n=nc�‘��: (1)

The inset of Fig. 3 shows that

 nc�‘� / ‘
z with z � 1: (2)

For the asymptotic filling height, a power law

 h1�‘� / ‘
� with � � 0:327 (3)

gives a very good fit (see Fig. 3).
This implies that the number of portions cut from the

steady-state configuration of a system of width L scales
like Np � h1L=‘

2 / ‘��2. Consequently, the mass per
portion is M=Np / ‘df with

 df � 2� � � 1:67	 0:03: (4)

One can interpret df as the fractal dimension of the struc-
ture on length scales smaller than the fragmentation length
‘, because the short-range part of the pair correlation
function g�r� does not depend on ‘ (see Fig. 4). This means
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FIG. 2. Time evolution of filling height starting from a random
dense packing of height h0 (indicated by the dashed line). The
same asymptotic filling height is reached from above, if the
particles initially form a single vertical needle (data marked by

) instead of a random dense packing. The full lines are fits
according to Eq. (1).
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FIG. 3. The asymptotic filling height h1 grows as a power law
h1�‘� � ‘

� with mesh size ‘. The full line shows the best fit,
� � 0:327. Inset: The relaxation time nc�‘� increases linearly
with mesh size.
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that the short-range structure is independent of the overall
density. For large distances, on the other hand, the pair
correlation function approaches the overall density, which
decreases with increasing ‘.

On first glance, however, the fractal dimension Eq. (4)
seems at odds with the fact that the asymptotic average
fragment mass grows linearly with the mesh size ‘ (Fig. 5),
suggesting, instead, that the fragments are effectively one-
dimensional structures. This puzzle can be resolved only
by assuming that the number of disconnected fragmentsNf
per mesh cell has itself a power-law dependence on ‘:

 

Nf
Np
/ ‘�: (5)

As we are going to prove in a moment, the
fragmentation-reagglomeration dynamics implies that the
exponents � and df must be related by

 � � df � 1: (6)

Consequently the mass per fragment is linear in ‘:

 

M
Nf
/
‘df

‘�
/ ‘: (7)

The proof of the scaling relation Eq. (6) is based on the
steady state condition that the deposition of fragments
reestablishes on average as many contacts as were cut in
the preceding fragmentation step. An ‘� ‘- mesh cell
contains / ‘df particles, of which / ‘df�1 are at the cell

boundary. Hence, the number of particle contacts cut by the
boundary of one cell scales as

 Ncut / ‘df�1: (8)

Each of the ‘� fragments forms two new contacts when
deposited. Equating Ncut � 2Nf=Np gives Eq. (6).

Fragment mass distribution.—A detailed understanding
of the fragment properties is provided by the distribution of
fragment masses, shown in Fig. 6. It reveals that one must
distinguish two types of fragments, large chunks at the
upper end of the mass spectrum with a characteristic size
mc, and scale invariant dust responsible for the power-law
part that is cut off bymc. Comparing the mass distributions
for different mesh sizes ‘ shows, that they can approxi-
mately be written in the form

 f�m; ‘� � m�� ~f
�
m

mc�‘�

�
; (9)

where the scaling function ~f�x� is constant for x� 1, goes
through a maximum at x � 1, and has an approximately
Gaussian tail for x 1. The typical massmc of the chunks
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FIG. 4. Pair correlation function (semi-log-plot) of the steady
state structure.
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FIG. 5. Average fragment mass as a function of the mesh size ‘
in the asymptotic steady state.
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FIG. 6. Normalized fragment mass distribution for different
mesh sizes ‘. f�m� is the number of fragments of mass m divided
by the total number of fragments for a given ‘. Inset: Data
collapse using mc / ‘

df with df � 1:695 and � � 1:41.
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FIG. 7. Chunk mass mc as a function of mesh size. Slope of
straight line is 1.695.
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has a power-law dependence on the mesh size, mc �
0:304‘1:695 (Fig. 7), the exponent being in good agreement
with the value of df, Eq. (4).

The evaluation of the dust exponent, �, is more difficult,
since the slope fitted to the power law part of the mass
distribution in the log-log-plot Fig. 6 decreases signifi-
cantly with increasing ‘. An extrapolation of � for ‘�1=2 !
0, see Fig. 8, gives an estimate of � � 1:38. However, an
independent method of determining � gives a larger value.
It is based on the important observation that the width of
the chunk distribution is proportional to mc. Hence the
fraction of chunks among the fragments vanishes like

 fchunks / m
1��
c / ‘df�1���; (10)

because � is larger than 1. Hence, the normalization of
f�m� for ‘! 1 implies that

 1 � f�1�
X
m

m�� � f�1����� (11)

with Riemann’s zeta function at the argument �. Solving
this equation numerically with f�1� � 0:36 (for the
‘ values we considered) gives an estimate � � 1:46.

We have seen that the overwhelming number of frag-
ments are dust particles, apart from a vanishing fraction of
chunks. However, these dust particles carry only a vanish-
ing fraction of the total mass M. According to Eq. (7),

 mdust � f�1����� 1�
Nf
M
/

1

‘
(12)

vanishes for ‘! 1. Essentially all the mass is in the few
chunks. This explains why the mass (essentially mass of
chunks) per fragment (essentially per dust particle) (Fig. 5)
has nothing to do with the fractal dimension.

Now a consistent picture has formed: Each portion (or
mesh cell) contains typically one chunk. The number of
fragments per portion, which according to Eq. (5) scales
like ‘�, can thus be identified with 1=fchunks, which ac-
cording to Eq. (10) scales as ‘df���1�. This shows that the
fractal dimension of the chunks and the dust exponent are
not independent of each other. Using Eq. (6) they obey the

scaling relation

 df�2� �� � 1: (13)

For df � 1:695 this implies � � 1:41, in between the two
� values obtained above. These values lead to an excellent
data collapse for the fragment mass distributions [see Fig. 6
(inset)].

This investigation offers several interesting directions to
be explored further. In particular the modeling of the
fragmentation process using a rigid square mesh (a
‘‘sieve’’) seems a bit contrived for nanopowders. It is
responsible for cutting off the tiny fragments we called
dust along the boundaries of the mesh cells. Other frag-
mentation processes like shaking or stirring are likely to
produce less dust. Whether or not they lead to a broader or
a narrower chunk size distribution remains an open ques-
tion. Last, but not least, the extension of the model to three
dimensions will probably change the exponents.
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FIG. 8. Effective dust exponent � vs 1=‘.
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