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This Letter emphasizes that nonlinear rotational or diamagnetic susceptibility is characteristic of Bose
fluids above their superfluid TC’s. For sufficiently slow rotation or, for superconductors, weak B fields, this
amounts to an incompressible response to vorticity. The cause is that there are terms missing in the
conventionally accepted model Hamiltonian for quantized vortices in the Bose fluid. The resulting
susceptibility can account for recent observations of Chan et al. [Nature (London) 427, 225 (2004);
Science 305, 1941 (2004)] on solid He and Ong et al. [Europhys. Lett. 72, 451 (2005)] on cuprate
superconductors.
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The recent experiments of Kim and Chan [1] have been
generally interpreted as indicating that solid He is showing
supersolid behavior. Chan himself describes his observa-
tions as demonstrating what Leggett [2] described as ‘‘non-
classical rotational inertia’’; that is, the moment of inertia
for low angular velocity is not that of a rigid rotor of the
same density and dimensions. I prefer the designation
‘‘nonlinear rotational susceptibility’’ (NLRS) which means
much the same, namely, that the moment of inertia is a
function of the rotational velocity returning to the classical
value at high values, while it indicates that I, the moment
of inertia, has the character of a susceptibility to rigid
rotation at angular velocity !:

 I � @Lj@! � @2Fj�@!�2: (1)

Numerous experiments are unable to find true super-
currents flowing in solid He, and the simplest explanation
of these observations is that the phenomenon observed is
simply NLRS and not superfluidity, at least under the
conditions tested, which leaves the question of supersolid-
ity open.

I observe that there is, in the experiments of Ong, et al.
[3] on superconductors above TC, a phenomenon of ‘‘non-
linear diamagnetic susceptibility’’ in the absence of true
superconductivity. The diamagnetic susceptibility, which
is the response @2F=�@B�2 to the vorticity in the electron
gas induced by a magnetic field B, is relatively large and
nonlinear at field scales which are relatively low—in some
cases it is even divergent at low B. On the other hand, the
resistivity is finite and perfectly linear.

In the phase space region which Ong is investigating, the
electrons are thought to be fairly strongly paired, super-
conductivity having been destroyed only by phase fluctua-
tions of the order parameter, as demonstrated in 1993 by
Salamon [4]. Therefore it is reasonable to think of the
currents as being predominantly carried by paired elec-
trons, i.e., bosons. If there is a finite local pair amplitude
above TC, the pair wave function will have a time- and
space-varying phase �, and the current will be propor-
tional to r� and conserved. If so, � will be completely

determined by a network of vortex lines—in 3D, mostly
vortex loops. Thus it is appropriate to describe this phase as
a vortex fluid [5].

In solid He the currents, whether flowing in some per-
colating network of defects, as many believe, or intrinsic to
an incommensurate solid, are necessarily bosonic, and may
also be describable by a local time- and space-varying
phase. In this case it is even more plausible to assume
the currents divergenceless, so that again they must be
completely described by some time-varying tangle of vor-
tex lines at temperatures above any superfluid transition
TC. The observations thus imply that this system, too, is a
vortex fluid.

From the observations in Refs. [1,2] one may deduce the
properties of this vortex fluid state. First, at least in most of
the range of observation it is dissipative; the random
motions of the vortices constitute a thermal reservoir into
which energy may be dissipated, and the current-current
correlations decay with time. But it is incompressible in the
sense that inserting an extra quantum of vorticity costs an
energy which is divergent in the distance between such
extra vortices. Standard theories of vortex-mediated phase
transitions such as those of Kosterlitz and Thouless [6] and
Williams [7] in 3D discuss only the question of adding or
removing vortices in opposite sign pairs (Ref. [6]) or
vortex loops (Ref. [7]) but I here discuss the addition of
net vorticity, and the experiments tell one, rather unequivo-
cally, that the response of a vortex liquid to this is
anomalous.

Let me make some remarks about the experiments on
helium. Several groups have been successful in reproduc-
ing results like Chan’s using an annular cell, and have
found similar ! dependence of the moment of inertia, in
the range where one may estimate that the annular thick-
ness may contain one or a few vortices. Reppy has shown
that the amount of NLRS is very dependent on crystal
perfection, and increases under conditions where one
knows that there are many defects, but Chan’s study of
very carefully grown samples has been unable to eliminate
the effect entirely, and his and Kojima’s observations [8]
have even hinted that there may be a true phase transition at
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low enough temperature. But whether there is a true tran-
sition in pure He or not, the first message of this Letter is
that the experimental situation in solid He has been mis-
characterized, and that most of the measurements are not
consistent with the observation of supersolidity but are
with the idea that solid helium contains an incompres-
sible vortex liquid which may be above a supersolidity
transition.

I will now try to make the existence of this state theo-
retically plausible. To do so I will revert to the 2D model of
Ref. [6], although I believe that the results generalize
simply to 3D. The current in a 2D system of vortices is
simply the sum of those due to the individual vortex points
(I scale �s to 1 for convenience):

 Ji � r�i � qi�̂i=jr� rij; qi � �1: (2)

There must be a lower cutoff around the vortex points if
only because the velocity cannot be infinite; this will be
implicit in all further work. The energy is then the integral
of the square of the sum of all the contributions (2):

 U �
1

2

Z
d2r��iJi�2: (3)

The integration in (3) may be carried out and the result is,
introducing an upper cutoff radius R for the sample as a
whole which is more or less identical for all vortices,
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qiqj lnrij=a: (4)

I note from the first line of (4) that each individual vortex
has a self-energy which diverges logarithmically as
2� ln�R=a�, but that if the system of vortices is neutral
with

P
iqi � 0, the dependence on sample size cancels

against terms from the sum of all the other vortices and
the standard Kosterlitz-Thouless interaction energy results,
with no dependence on the upper cutoff radius:

 UK�T � �2�
X
i�j

qiqj ln�ri � rj�=a�
X
j

Ec: (5)

The core energy Ec for the local energy cost of a point
zero of the boson field could formally be subsumed into a.

If, however, there is a mismatch in the � and � vortex
numbers, there remains a divergent term proportional to
the logarithm of the upper cutoff radius. This term is
formally proportional to the square of the mismatch, but
there are also long-range uncompensated terms in the
interaction (5), and taking these into account it turns out
that effectively one must add in a large self-energy
2� ln�Rc=a� for each unpaired vortex, if their distribution
is reasonably uniform. Rc is approximately the distance
between unpaired ‘‘field’’ vortices. This term has been
omitted in all previous treatments of the ‘‘normal’’ Bose

fluid, as well as in discussions of the superconducting
vortex fluid.[9]

A mismatch in vortex numbers means that the sample
has net vorticity, i.e., is rotating as a whole (or, in the
superconducting case, that it is experiencing an external
B field). As has been understood since the 1950s [10], the
minimum energy configuration will be a uniform array of
vortices, which is the closest mimic of rigid rotation. At
length scales greater than the distance between unmatched
vortices Rc (this will be the magnetic length, lB, in the
superconducting case) the physics is macroscopic and
classical, and the quantization of vorticity is irrelevant. In
this regime the divergent self-energy for r> the lattice
constant of the array may be canceled against whatever
source of energy is causing the rotation or against the
source energy of the B field. But there still remains the
energy caused by quantization of the vorticity, leading to a
nonuniform local velocity. This energy is (if the density of
extra vortices is nV) proportional to

 nV ln�R2
c=a

2� � nV ln�1=nVa
2�: (6)

nV is constrained by the need for canceling the divergent
terms to be proportional to B for the superconductor and to
! for the superfluid, as explained above. (Some have found
this discussion obscure. I have tried to make it parallel
between the Bose superfluid and the charged pair fluid,
where one can remove the divergence in R with a vector
potential A. In both cases, however, the limiting scale at
large distances is set by the average spacing of the extra
field vortices. Perhaps it is easiest for the reader to mentally
subdivide the system into cells, each containing one field
vortex, for which the argument is obvious.)

The crucial point which makes the vortex liquid incom-
pressible is that the energy (6) is not screened out by the
thermally excited pairs above TC. This is counterintuitive
relative to one’s experience with the apparently similar
system of electrically charged particles, but it is true.
One important difference between the two cases is that
the self-energy of charged particles is ignored as being
compensated by their chemical potential, whereas here it is
part of the dynamical problem.

The result may be understood by simply examining the
energy expression (4). This consists of the sum of all
interaction energies, each term proportional to ln�rij=a�,
and the self-energy term, which is independent of all rij’s
and depends on lnR. Adding an unmatching vortex cannot
change the interaction sum by this much: at a distance, the
extra vortex encounters a neutral gas of vortices, and close
by, it may have attracted a screening cloud—consisting of
a single quantum of vorticity—at a radius of order
1=�npairs�

1=2, but that does not give a large term in the
energy. When a quantum of vorticity is added, its circulat-
ing current is uncorrelated with the others’ at distances less
than Rc. One may think of this temperature region as being
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dominated by entropy, leaving the vortices quite uncorre-
lated but uniformly distributed.

Another way to understand this rather counterintuitive
point is to realize that the change in the interaction sum (5)
will not depend on whether the added vortex is the first or
the second of an opposing pair; the screening dynamics
will be basically local. Since (5) is the only part of the
energy depending on relative vortex positions, that leaves
the term (6) unchanged.

In 3 dimensions, the computation is more complex but if
we are above the x� y model TC, entropy dominates and
the extra vortex line is not effectively screened.

On the other hand, (4) is the energy, not the free energy.
Below TC, it is controlling and gives, for instance, the
Abrikosov theory of the vortex lattice in superconductors.
Below TC the thermally excited vortices are bound in pairs
and partially screen the interactions. In the Kosterlitz-
Thouless theory, TC occurs where the extra logarithmic
energy of free vortices is compensated in the free energy by
T times the logarithmic entropy which one gains by allow-
ing the vortex to be anywhere in the sample. Above TC,
pairs of vortices proliferate in such a way that their number
is given by the activation expression which results from
equating the logarithmic terns in the energy and entropy of
a nearby pair:

 npr � �1=a
2� exp��Ec=�T � TC��: (7)

Interactions reduce the numbers of vortices but do not
cause strong correlations among them.

The large extra entropy of the unmatched vortices does
not cause them to proliferate because they are indistin-
guishable from the positive members of pairs whose num-
ber obeys (7). Actually, the free energy of order n ln�n�
cancels exactly. This cancellation does not occur to higher
order in nV leading to a free energy term of form �nV�2	
ln�1=nV�, which gives the logarithmically divergent re-
sponse function.

The Nernst effect gives one a uniquely direct way of
measuring specifically the energy carried by vortices. This
is because of the reciprocity between the Nernst effect—
the voltage response to a heat current—and the
Ettingshausen effect, the heat current response to a given
voltage. An E field implies that the net vorticity moves at
the velocity

 V � cE=B: (8)

The heat transported is just the actual energy (6) of the
vortices, so the Ettingshausen coefficient �xy is propor-
tional to B lnB. The actual shape of�xy vs B is complicated
by the strong dependence of �s on B, and has been dis-
cussed at length and quantitatively elsewhere [11].

An equally challenging experiment in the superconduct-
ing case is the direct measurement of the vortex energy via
the magnetization. The energy must come from the inter-
action of the current with the field, which is JA=2 or,

equivalently,MB=2, so the diamagnetic moment is a direct
measurement of the energy due to the added vortices.
When, as is often the case, the two measurements yield
nearly identical results related by the factor 2=T, that is
strong evidence for quantized vortices.

Both the Nernst effect and the magnetization can have
other causes. There are several ways in which a Nernst
effect can result from particle currents, although except in
special circumstances these effects are small and linear. It
is also clear that magnetization can result from spin sus-
ceptibility or Van Vleck paramagnetism, which are com-
pletely independent effects. Thus identifying the vortex
term by using the two measurements together may often
allow a fairly unequivocal diagnosis of vortex motion.

Most treatments of the Bose liquid above TC such as
Ref. [7] (see also [12]) have restricted themselves to the
critical range near the � point or K-T transition. But as we
see, the anomalous response is not a critical phenomenon
but an intrinsic property of the vortex liquid phase, and
should persist as long as there is a finite core energy for
vortices. In Ong’s Nernst effect fluid there seems to be
quite a range above the critical region which is character-
ized by a correlation time for vortex flow of around h=kT,
which then sets the density of vortices via v � h=m����.
Whether a similar ‘‘classical’’ vortex liquid exists in solid
He is yet to be determined.
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