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Exact (to all orders in Knudsen number) equations of linear hydrodynamics are derived from the
Boltzmann kinetic equation with the Bhatnagar-Gross-Krook collision integral. The exact hydrodynamic
equations are cast in a form which allows us to immediately prove their hyperbolicity, stability, and
existence of an H theorem.
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Hydrodynamics assumes that a state of a fluid is solely
described by five fields: density, momentum and tempera-
ture. Derivation of the Navier-Stokes-Fourier (NSF) hydro-
dynamic equations from the Boltzmann kinetic equation as
the first-order approximation in the Knudsen number (ratio
between mean free path and a flow scale) by Enskog and
Chapman is a textbook example of a success of statistical
physics [1]. Recent renewed interest to the problems be-
yond the standard hydrodynamics is due, in particular, to
flow simulation and experiments at a micro- and nanoscale
[2–4]. However, almost a century of effort to extend the
hydrodynamic description beyond the NSF approximation
failed even in the case of small deviations around the
equilibrium. In order to appreciate the problem, let us
remember that, in the NSF approximations, the decay
rate of the hydrodynamic modes is quadratic in the wave
vector, Re�!� � �k2, and is unbounded. On the other
hand, Boltzmann’s collision term features equilibration
with finite characteristic rates. This ‘‘finite collision fre-
quency’’ is obviously incompatible with the arbitrary de-
cay rates in the NSF approximation: intuitively, hydro-
dynamic modes at large k cannot relax faster than the
collision frequency. Now, the classical method of Enskog
and Chapman extends the hydrodynamics beyond the NSF
in such a way that the decay rate of the next order approx-
imations (Burnett and super-Burnett) are polynomials of
higher order in k. In such an extension, relaxation rate may
become completely unphysical (amplification instead of
attenuation), as first shown by Bobylev [5] for a particular
case of Maxwell molecules. This indicates the inability of
the Chapman-Enskog method to tackle the above problem,
and nonperturbative approaches are sought. The problem
of exact hydrodynamics has been studied in depth recently
for toy (finite-dimensional) models—moment systems of
Grad—in [6,7], and many remarkable results were ob-
tained. In particular, in [7] it was shown that the exact
hydrodynamic equations are hyperbolic and stable for all
wave numbers. However, for ‘‘true’’ kinetic equations such
questions remain open.

In this Letter we derive exact hydrodynamic equations
from the linearized Boltzmann equation with the

Bhatnagar-Gross-Krook (BGK) collision term. This ki-
netic equation remains popular in applications [8], and
features a single relaxation rate. The result for the hydro-
dynamic modes is demonstrated in Fig. 1. It is clear from
Fig. 1 that the relaxation of none of the hydrodynamic
modes is faster than ! � �1 which is the collision fre-
quency in the units adopted in this paper. Thus, the result
for the exact hydrodynamics indeed corresponds to the
above intuitive picture. Below, we apply the method of
invariant manifold [9] to derive the hydrodynamic equa-
tions. The nonperturbative derivation is made possible with
an optimal combination of analytical and numerical ap-
proaches to solve the invariance equation.

Point of departure is the linearized Boltzmann-BGK
equation for the deviation 4f � f� fGM of the distribu-
tion function f from a global Maxwellian fGM�c2� �

��3=2e�c
2
. In the reciprocal space, it reads,

 @t�f � �ik � c�f� �f; �f � f� fLM; (1)

with the wave vector k � kek defining ek, k � jkj, pecu-
liar velocity c and time t. All quantities are considered
dimensionless, i.e., reduced with the units of the relaxation
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FIG. 1. Exact hydrodynamic modes ! of the Boltzmann-BGK
kinetic equation as a function of wave number k (two complex-
conjugated acoustic modes !ac, twice degenerated shear mode
!shear and thermal diffusion mode !diff). The nonpositive de-
cay rates Re�!� attain the limit of collision frequency (�1) as
k! 1.
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time �, the thermal velocity
������������������
2kBT=m

p
and mass m of the

particle. In (1), the linearized local Maxwellian is fLM �
fGM�1� ’0� where 1� ’0 � h1if � 2c � hcif � 2

3 	

�c2 � 3
2�hc

2 � 3
2if. Averages are defined for arbitrary !

via h!if �
R
!fd3c, and we introduce pertinent quanti-

ties which characterize deviation from the global equilib-
rium: n � h1if � 1 (density perturbation), u � hcif
(velocity perturbation) and T � 2

3 hc
2 � 3

2if (temperature
perturbation). Since the scalar product between k and c
appears in (1), the distribution function offers symmetry
with respect to the ek-axis, which is not uniaxial in case u
is not collinear with ek. We denote the two components of
the mean velocity as uk � u � ek and u? � u � e?, where
the unit vector e? belongs to the intersection of the plane
perpendicular to k and the plane spanned by k and u, so
that u � ukek � u?e?. Equations of change for moments
h!i are obtained by integration of the weighted (1) over
d3c as

 @th!i�f � �ik � hc!i�f � h!i�f: (2)

In order to calculate such averages, we can switch to
spherical coordinates. For each (at present arbitrary) wave
vector, we choose the coordinate system in such a way that
its z direction aligns with ek. We can then express c in
terms of its norm c, a vertical variable z and plane vector
e� (azimuthal angle e� � e? � cos�) for the present pur-

pose as c=c �
��������������
1� z2

p
e� � zek. We could have equally

chosen a fixed coordinate system in the plane orthogonal to
k, and two fields instead of u? plus an angle, viz. u?x �
iu?y � ei�u?. Because of isotropy, u? alone fully repre-
sents the twice degenerated (shear) dynamics. In order to
simplify notation and compute the dynamics of all five
fields we introduce a four-dimensional vector of hydro-
dynamic fields, x � �x1; x2; x3; x4� � �xk; x4� with xk �
�n; uk; T� and x4 � u?. Then ’0 takes a simple form,’0 �
X0 � x. The vector X0 can immediately be read off, we
have X0�c; z� � �1; 2ck; c2 � 3

2 ; 2c��, where we intro-
duced, for later use, the abbreviations

 ck � c � ek; c� � c � e?; c? �
c�

e? � e�
; (3)

such that ik � c � ikck, c � c?e� � ckek with ck � cz

and c? � c
��������������
1� z2

p
, contrasted by c� (and e�), do not

depend on the azimuthal angle. Similarly, we introduce yet
unknown fields �X�c;k� which characterize the nonequi-
librium part of the distribution function, �’ � �f=fGM in
terms of the hydrodynamic fields x themselves,

 �’ � �X � x � �X1n� �X2uk � �X3T � �X4u?; (4)

where �X4 factorizes as �X4�c; z;�� � 2�Y4�c; z�e� � e?.
This ‘‘eigenclosure’’ (4) which formally and very generally
addresses the fact, that we wish to not include other than
hydrodynamic variables implies a closure between mo-
ments of the distribution function, to be worked out in

detail below. It assumes the existence of an invariant
manifold, and the hydrodynamic fields as slow variables
which leave the higher moments ‘‘slaved.’’ It is an impor-
tant technical aspect of our derivation to work with an
orthogonal set of basis functions (irreducible tensors) to
represent �f uniquely. Accordingly, hX0i�f � 0 holds and
the lowest order moments x are defined through the local
Maxwellian part of the distribution function. Using the
above form for �f in (1), and using the canonical abbre-
viation 4X � X0 � �X, yields

 �X � @tx � �ikck�X � x� �X � x; (5)

which is a nonlinear integral equation for the unknown
fields �X, because @tx has to be replaced by the right hand
side of (2), for a suitably chosen vector ! fulfilling
h!i�f � x. Here, ! is similar with X0 and differs from
X0 mainly because of conventions for prefactors in the
temperature and velocity definitions, ! � �1; ck;

2
3 	

�c2 � 3
2�; c��. Within the same eigenclosure, Eq. (2) is

linear in x and hence written as

 @tx �M � x: (6)

The matrix M solely depends on the nonhydrodynamic
fields, the heat flux q � hc�c2 � 5

2�if and the stress tensor
cc , where denotes the symmetric traceless part of a
tensor s [7,10], � 1

2 �s� sT� � 1
3 Tr�s�I. Using (4), the

stress tensor and heat flux uniquely decompose as follow

 (7)

with the moments �k � ��k1; �
k
2; �

k
3� � xk and �? � �4x4,

and similarly for q (see Row 2 of Table I). The prefactors
arise from the identities e‖ e‖ : ekek � 2

3 and e‖ e‖ :

eke? � 1
2 . The appearance of �Y4 rather than �X4 in the

expression for the orthogonal moment (in Table I) reflects
the fact that we have already integrated out the angular
variable,

R
2�
0 e�e� � e?d� � �e?. We note in passing

that, while the stress tensor has, in general, three different
eigenvalues, in the present symmetry adapted coordinate
system it exhibits a vanishing first normal stress difference.
Since the integral kernels of all moments in (7) do not
depend on the azimuthal angle, these are actually two-
dimensional integrals over c 2 
0;1� and z 2 
�1; 1�,
weighted by 2�c2fGM�c2��X�.

Stress tensor and heat flux can yet be written in an
alternative form which is defined by row 3 of Table I. As
we will see later on, due to basic symmetry considerations,
the hereby introduced functions A–Z are real valued. We
postpone the related proof, and proceed by using these
functions A–Z to split M into parts as M � Re�M� �
iIm�M�,

 M � k2

0 0 0 0
0 A 0 0

2
3X 0 2

3Y 0
0 0 0 D

0
BBB@

1
CCCA� ik

0 1 0 0
~B 0 ~C 0
0 ~Z 0 0
0 0 0 0

0
BBB@

1
CCCA; (8)
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with plain abbreviations ~B � 1
2� k

2B, ~C � 1
2� k

2C, and
~Z � 2

3 �1� k
2Z�. Note that the checkerboard structure of

the matrix M (8) is particularly useful for studying prop-
erties of the hydrodynamic Eqs. (6), such as hyperbolicity
and stability (see [7] and below), once the functions A–Z
are explicitly evaluated. For that, we still require �X.
Combining (5) and (6), and requiring that the result holds
for any x (invariance condition), we obtain a closed, sin-
gular integral equation (invariance equation) for complex-
valued �X,

 �X � X0 � �M� 
ikck � 1�I��1 �X0: (9)

Notice that �X vanishes for k � 0. We remind the reader
that we use orthogonal basis functions (irreducible mo-
ments cf. Table I) to solve (9). The implicit Eq. (9) is
identical with the eigenclosure (4), and is our main and
practically useful result, with M from (8), ck, X0, and A–Z
defined in and just before (3) and Table I, respectively.

We iteratively calculate (i) �X directly from (9) for each
k in terms of M, (ii) subsequently calculate moments from
�X by either symbolical or numerical integration (both
approaches produce same results within machine preci-
sion, we found simple numerical integration on a regular
500	 100 grid in c, z space with grid spacing 0.01 on both
axes sufficient to reproduce analytical results).
Importantly, the fix point of the iteration (i)-(ii)-(i)-.. is
unique for each k, i.e., does not depend on the initial values
for moments A–Z, as long as we choose real-valued ones
which are consistent with (9), as we prove in the next
paragraph. In addition, two other computational strategies

were implemented: First, we used continuation of func-
tions A–Z from their values at k � 0 to solve (9) with an
incremental increase of k, where the solution at k was used
as the initial guess for k� dk. Second, we used also a
continuation ‘‘backwards’’ in which the solution at some k
(obtained by convergent iterations with a random initial
condition) was used as the initial guess for a solution at k�
dk. Both these strategies returned the same values of
functions A–Z as computed by iterations from arbitrary
initial condition. The solution �X allows to calculate the
whole distribution function f via (4) as illustrated by Fig. 2.
For resulting moments for a wide range of k values see
Fig. 3.

Finally, we need to clarify the origin of row 5 in Table I
(which is directly illustrated by Fig. 2) and its implication
on the structure of M (8) whose entries are—a priori—-
complex-valued functions to be calculated with complex-
valued �X. We wish to make use of the fact that all
integrals over z vanish for odd integrands. To this end we
introduce abbreviations � (
) for a real-valued quantity
which is even (odd) with respect to the transformation z!
�z. One notices X0 � ��;
;�;��, and we recall that A–Z
are integrals over either even or odd functions in z, times a
component of �X (see Table I). Let us prove the consis-
tency of the specified symmetry of M and the invariance
condition: Start by assuming A–Z to be real-valued func-
tions. Then M�� � � if �� � is even, and M�� � i�
otherwise. This implies �X1 � �� i 
 , �X2 � 
� i � ,
�X3 � �� i 
 , and �X4 � �� i 
 , i.e., different sym-
metry properties for real and imaginary parts. With these
‘‘symmetry’’ expressions for X0, �X, and M at hand, we
can insert into the right-hand side of the equation, �X �
�X0 � �X� � �M� i 
 I�, which is identical with the in-
variance Eq. (9). There are only two cases to consider,
because M has a checkerboard structure, i.e., only two
types of columns: Columns � � 1 and � � 3: �X� �
�� i
 because M1�3;4 � 0; Columns � 2 f2; 4g: �X� �
�� i
 ifM�;1�3 � 0 (which is the case for column 4) and

� i� if M�;4 � 0 (which is the case for column 2).

We have thus shown that both sides of the invariance
Eq. (9) have equal symmetry properties, and that �X with

TABLE I. Symmetry adapted components of (nonequilibrium)
stress tensor � and heat flux q, both introduced in (7). Row 2:
Microscopic expression of these components (averaging with the
global Maxwellian). Short-hand notation used: �k � c2

k
� c2

3 and
	k � �c2 � 5

2�ck. Row 3: Expression of the components in terms
of (as we show, real-valued) functions A–Z (see text). Row 4:
Values of functions A–Z at k � 0. These values recover hydro-
dynamic equations up to Burnett approximation and have been
obtained analytically from (9) by taking into account lowest
order terms in k only. Row 5: Parity with respect to z—sym-
metric ( � ) or antisymmetric ( 
 )—of the part of the corre-
sponding �X entering the averaging in row 2, and whether this
part is imaginary or real valued (see Fig. 2). Row 3 is an
immediate consequence of row 5.

�k1 �k2 �k3 �4

h�k�X1i h�k�X2i h�k�X3i hckc?�Y4i

�k2B ikA �k2C ikD
B0 � �

1
3 A0 � �

2
3 C0 � 0 D0 � �

1
2

real, � imag, � real, � imag, 


qk1 qk2 qk3 q4

h	k�X1i h	k�X2i h	kck�X3i h�c2 � 5
2�c?�Y4i

ikX �k2Z ikY �k2U
X0 � 0 Z0 � �

1
6 Y0 � �

5
4 U0 �

1
2

imag, 
 real, 
 imag, 
 real, �

FIG. 2 (color online). Sample distribution function f�c;k� at
k � 1, fully characterized by the four quantities �X1;2;3�c; z� and
�Y4�c; z�. Shown here are both their real (top) and imaginary
parts (bottom row). In order to improve contrast, we actually plot
lnj1� fGM�X�jmultiplied by the sign of �X�. Same color code
for all plots, ranging from �0:2 (red) to �0:2 (blue).
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the specified symmetries is consistent with real-valued
moments A–Z. The proof implies, that any iteratively
obtained solution, if it exists, starting with arbitrary real-
valued moments A–Z in (9) to evaluate �X, must converge
to real-valued solution A–Z. Since the solution is smoothly
varying with k, and since A–Z at k � 0 are known and are
real-valued, the moments must be real-valued over the
whole k space.

With the result for the functions A–Z at hand, the ex-
tended hydrodynamic equations are closed. Let us briefly
discuss the pertinent properties of this system. First, the
generalized transport coefficients are given by the non-
trivial eigenvalues of �k�2Re�M�: �2 � �A (elongation
viscosity), �3 � �

2
3Y (thermal diffusivity), and �4 � �D

(shear viscosity). All these generalized transport coeffi-
cients are non-negative (see Fig. 3). Second, computing
the eigenvalues of matrix M we obtain the dispersion
relation !�k� of the corresponding hydrodynamic modes
already presented in Fig. 1. Third, a suitable transform of
the hydrodynamic fields, x0 � T � x, where T is a real-
valued matrix, can be established such that the transformed
hydrodynamic equations, @tx0 �M0 � x0, with M0 �
T �M � T�1 is manifestly hyperbolic and stable; Im�M0�
is symmetric, Re�M0� is symmetric and nonpositive semi-
definite. The corresponding transformation matrix T can
be easily read off the results obtained in [7] for Grad’s
systems since the structure of the matrix M (8) is identical
to the one studied in [7]. We have explicitly verified that
matrix T [Eqs. (21)–(23) in Ref. [7(a)] and (13) in
Ref. [7(b)]] with the functions A–Z derived herein is real
valued and thus render the transformed hydrodynamic
equations manifestly hyperbolic and stable. We note that
this result—hyperbolicity of exact hydrodynamic equa-
tions—strongly supports a recent suggestion by Bobylev
to consider a hyperbolic regularization of the Burnett
approximation [11]. Similarly, using the hyperbolicity, an
H theorem is elementary proven as in [11,7(b)]. Finally,
using the accurate data for functions A–Z, we can write
analytic approximations for the hydrodynamic Eqs. (6) in

such a way that hyperbolicity and stability is not destroyed
in such an approximation (see [7(a)]).

In conclusion, we derived exact hydrodynamic equa-
tions from the linearized Boltzmann-BGK equation. The
main novelty is the numerical nonperturbative procedure to
solve the invariance equation. In turn, the highly efficient
approach is made possible by choosing a convenient coor-
dinate system and establishing symmetries of the invari-
ance equation. The invariant manifold in the space of
distribution functions is thereby completely characterized,
that is, not only equations of hydrodynamics are obtained
but also the corresponding distribution function is made
available. The predicted smoothness and extendibility of
the spectrum to all k is expected to have some implications
for micro-resonators where the quality of the resonator
becomes better at very high frequency—that is compatible
with our prediction. The damping of all the modes satu-
rates while the imaginary part of the acoustic modes fre-
quency grows. The pertinent data can be used, in particular,
as a much needed benchmark for computation-oriented
kinetic theories such as lattice Boltzmann models, as well
as for constructing novel models [12]. The present ap-
proach can be extended to the Boltzmann equation with
other collision terms, and supplemented with appropri-
ate boundary conditions cf. [13], to study sound-wave
propagation.
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FIG. 3. Moments A–Z vs wave number k obtained with the
solution of (9).
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