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We report experimental evidence of spatial clustering of dense particles in homogenous, isotropic
turbulence at high Reynolds numbers. The dissipation-scale clustering becomes stronger as the Stokes
number increases and is found to exhibit similarity with respect to the droplet Stokes number over a range
of experimental conditions (particle diameter and turbulent energy dissipation rate). These findings are in
qualitative agreement with recent theoretical and computational studies of inertial particle clustering in
turbulence. Because of the large Reynolds numbers a broad scaling range of particle clustering due to
turbulent mixing is present, and the inertial clustering can clearly be distinguished from that due to mixing
of fluid particles.
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It is a common observation that a ‘‘passive’’ tracer
injected nonuniformly into a turbulent flow (e.g., a sub-
stance that only marks but does not modify the flow, such
as smoke in air or milk in tea) will soon be stirred and
mixed by the random vortices in the turbulence until it
attains a uniform distribution. Such high mixing power is
in fact a hallmark of turbulent flow [1]. One might reason-
ably ask if the same holds true when the substance is no
longer a perfect fluid tracer, such as one that consists of
macroscopically discrete particles possessing finite inertia,
like the distribution of water droplets in turbulent clouds
(e.g., actively convective cumulus clouds). In fact, water
droplets with mass density 103 times greater than that of air
are dynamically stubborn and do not exactly follow the
motion of the host fluid. As a result, these ‘‘inertial parti-
cles’’ should have a steady state spatial distribution differ-
ing from that of a uniform field of fluid particles [2–7].

The inertial clustering phenomenon has implications for
a wide range of problems in nonlinear and fluid dynamics,
including the formation of rain by droplet collisions in
atmospheric clouds [8–10]. Because the droplet collision
rate is proportional to droplet density squared, spatial
correlations due to inertial clustering can result in accel-
erated rain formation. Considerable progress has been
made in computational and theoretical studies of inertial
clustering, but experimental results are sparse [11,12] and
the nature of inertial clustering at high Reynolds numbers
remains an open problem [13]. Qualitatively, inertial clus-
tering can be understood as the result of particles being
centrifuged out of turbulent vortices and thus congregating
in regions of high strain [3,5]. Turbulence is a multiscale
process in which energy injected at large scales (of order l)
‘‘cascades’’ to progressively smaller scales through non-
linear interactions such as vortex stretching. Over most of
these spatial scales, known as the inertial range, fluid

inertia dominates over viscous forces; the scales at which
viscosity becomes important lie in the dissipation range.
The clustering of inertial particles is significant at dis-
sipation scales and below because it is in this range that
turbulent vorticity and accelerations are strongest
[9,14,15]. It should be noted, however, that alternate inter-
pretations and approaches exist [16–20], adding impetus
to the need for experimental data capable of elucidating
mechanisms and constraining theory. To that end, it is the
purpose of this Letter to describe an experimental study of
inertial clustering and its dependence on particle size and
turbulence conditions at high Reynolds numbers.

Suitable quantification of clustering is provided by the
particle pair correlation function ��r� [5,10], whose mag-
nitude characterizes the strength of clustering at scale r.
Intuition on the properties of ��r� can be gained by exam-
ining how it is calculated in our experiment for one-
dimensional sampling of the particle spatial distribution
[21]:

 ��r� �
~Q�r�=�r
Q=L

� 1; (1)

where ~Q�r� is the number of particle pairs separated by a
distance within [r� �r=2, r� �r=2], Q is the total num-
ber particle pairs in the sample, L is the sample length.
Previous theoretical and direct-numerical-simulation stud-
ies [6,9,15,22,23] suggest that under ideal conditions (ho-
mogenous and isotropic turbulence, single-size particle
population, particle-fluid coupling following Stokes’s
law, dilute particle loading, and negligible role of gravity)
��r� satisfies a simple power law [24]:

 ��r� / �r=rK��f�St�; (2)

where rK is the Kolmogorov length scale (characterizing
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the dissipation range) and f�St�> 0 increases monotoni-
cally with St for St< 1. Here, the Stokes number (St)
characterizes the particle’s inertial response to the flow
and is defined as the ratio of the particle inertial response
time �d to the Kolmogorov time �K (coherence time scale
for the dissipation range) [1]:

 St �
�d
�K
�

1

18

�
�d
�

��
d
rK

�
2
; (3)

where �d is the particle mass density, d is the particle
diameter, and the Kolmogorov microscale rK �
��3="�1=4 depends on the kinematic viscosity � of the fluid
(air) and the turbulent kinetic energy dissipation rate ".

The experimental setup, which is further detailed in the
supplementary material [25], consists of a wind tunnel with
well-characterized turbulence, sprays for particle genera-
tion, and a particle detector. Homogenous and nearly iso-
tropic turbulent flow is generated by a motorized ‘‘active
grid’’ capable of achieving high Reynolds number [26–
28]. Water droplets are introduced via four spray nozzles,
with the resulting size distribution being broad ( �d �
22 �m, �d � 13 �m). Downstream, a phase-Doppler in-
terferometer (PDI) [29] simultaneously measures the di-
ameter (di), downstream speed (vi), and arrival time (ti) of
all droplets that traverse its view volume (which has cross
section of approximately 150 �m� 210 �m). Table I lists
the flow parameters for the various experiments carried out
in the wind tunnel: the experiments differ in R� and ", and
therefore have different rK. Each experiment is referred to
by a name based on the distance downstream from the
active grid (in meters) where measurements are taken and
the speed of the fan [in hertz (Hz)] that drives the wind
tunnel.

The PDI is stationed far enough downstream (X � 3 and
5 m, where X is the distance from the active grid) such that
the small scale spatial distribution of the droplets reported
here have ample interaction time with the turbulence to

achieve equilibrium. This follows from the fact that the
transit time of droplets is much larger than the Kolmogorov
time scale (at least 200�K; see supplementary material [25]
for additional details). To obtain the droplet spatial distri-
bution (xi) needed for the evaluation of ��r� using (1), we
adopt a method equivalent to Taylor’s frozen turbulence
hypothesis [1] in which the time series is converted into a
spatial one (xi � tiU). Within each experiment, the depen-
dence of clustering on particle inertia is studied by select-
ing droplets from a small range of Stokes numbers
St� �St and then evaluating ��r� for that subset of drop-
lets. In practice, �St is chosen such that acceptable count-
ing statistics are obtained. Stokes numbers are calculated
using Stokes drag [cf. Eq. (3)], which is accurate to within
10% for the largest droplet diameters used in this study
(�50 �m). The uncertainty in this study is dominated
strongly by the ‘‘shot noise’’ in the value of ��r� due to
droplet counting statistics, as detailed in the supplementary
material [25].

The essential experimental results on particle clustering
are presented in Figs. 1 and 2, which depict the dependence
of ��r� on r̂ 	 r=rK for various flow conditions [in log-log
coordinates; cf. Eq. (2)]. Figure 1 illustrates how ��r�
changes with St within a single experiment (3m-30Hz).
We note that strong clustering is mainly limited to scales r̂
on the order of 10 and below [24], and that clustering is
stronger for droplets of larger St. Onset of clustering in the
dissipation range and monotonic increase of clustering
with St are consistent with theory for St
 1 [6,15]).
Within the inertial range, on the order of 10 & r̂ & 1000,
the correlation functions ��r̂� show weakly decreasing

TABLE I. Experiment flow parameters, where R� is the
Taylor-scale Reynolds number, U is the mean and u is the rms
fluctuation of the flow speed along the wind tunnel. The last 4
rows are the droplet diameters (in �m) and corresponding
gravitational settling parameters, Sg, for the St bins used in the
data analysis.

Experiment 3m-20Hz 3m-30Hz 5m-20Hz 5m-30Hz

R� 520 660 440 590
" (m2 s�3) 1.6 5.4 0.6 2.0
U (m s�1) 4.69 6.78 4.59 6.81
u=U 0.17 0.18 0.12 0.13
rK (�m) 210 150 270 200
St � 0:3 18, 0.14 13, 0.05 23, 0.30 16, 0.10
St � 0:7 27, 0.32 20, 0.13 35, 0.69 25, 0.26
St � 1:1 34, 0.50 25, 0.20 43, 1.04 32, 0.42
St � 1:5 39, 0.66 29, 0.27 51, 1.46 37, 0.56
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FIG. 1 (color online). ��r� versus r̂ �	 r=rK� with error bars of
2���r�, and with ��r� parametrized by St from experiment 3m-
30Hz. Consistent with theoretical expectations, ��r� increases in
magnitude with increasing Stokes number in the dissipation
range. Each line is ��r� calculated from droplets within the
specified range of St (from bottom to top corresponding to
successively larger St). The errors are evaluated as 2���r� (de-
tails in text).
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clustering with increasing r̂, and then fall off more strongly
at larger r̂. This inertial-range behavior typifies correla-
tions arising from mixing of a passive tracer by turbulence
[e.g., ��r� scaling as 1� �r=l�2=3] (Ref. [30], Sec. 2.9).
Essentially, large-scale inhomogeneities in the droplet spa-
tial distribution induced by the spray injection are subse-
quently stretched and distorted in the turbulent cascade, as
the droplets are advected downstream.

Droplets with different diameters but equal Stokes num-
bers from the experiments are compared in Fig. 2 (zoomed
scale), demonstrating ‘‘Stokes similarity’’ consistent with
scaling arguments for inertial clustering. The ��r� values
for the same St range coincide to within the experimental
error even though each is obtained from different flow
conditions and droplet sizes (see Table I). In obtaining
such comparison of the dissipation-range clustering,
large-scale correlations resulting from inertial-range mix-

ing must be removed. To that end, the ��r� curves in Fig. 2
are normalized such that they coincide in the inertial sub-
range (r̂� 100) (see supplementary material [25] for de-
tails). Finally, we note that although Stokes similarity is
evident in Fig. 2, for one data set a discrepancy is observed
for 1:1< St< 1:4, suggesting that the behavior of droplets
with St> 1 merits future investigation.

A further observation from Fig. 2 is the apparent power-
law dependence of ��r� in the dissipation range (for St �
1:1 data). Although this observation is rather tentative
given the level of uncertainty and the limited window of
resolvable scales showing constant slope, it suggests that
the power law is realized even for droplets with finite
Stokes number. Theoretically, the power law is valid for
St
 1 [see Eq. (2)], but computational work suggests that
the power-law dependence continues to hold for St & 1 as
well [22], consistent with our results. Detailed theoretical
and computational accounting of the more realistic case of
a finite range of Stokes numbers (i.e., �St> 0) is still
lacking, thus a direct comparison of our results with theory
is not possible here. Finally, quantitative comparison of
theoretical and measured power-law exponents will require
greater resolution at low Stokes numbers since the theory is
strictly applicable to St
 1.

Recently Wood and co-workers [12] also addressed
inertial clustering in an experiment with R� � 230 and
obtained results in qualitative agreement with computa-
tional work. We are especially interested, however, in the
implications of inertial clustering for cloud droplets and its
possible influence on the development of precipitation
[10]. For geophysical problems the open question of
Reynolds number dependence [13] is crucial, and therefore
we have utilized an experimental system allowing us to
attain Reynolds numbers approaching 103. This leads to a
clear separation of scales (i.e., l=rK � 2000) and reveals
the relative roles of inertial-range mixing and dissipation-
range clustering due to droplet inertia. This is critical in
allowing comparison between controlled laboratory data
such as these, to similar particle-counting measurements in
clouds, where turbulence characterization is considerably
more difficult [31–34].

Yet to be studied methodically is the role of gravitational
settling in inertial clustering. Theoretical findings on this
matter are sparse and the problem remains open. Our
experiments have large " relative to many atmospheric
clouds, thus the role of gravity is relatively less important.
Theoretically, the importance of gravity is expected to
scales as the gravitational sedimentation parameter Sg 	
�K=�g, where �g is the time required for a droplet to fall
over a distance of rK at its terminal speed. In our experi-
ments, the values of this quantity (cf. Table I) suggest that
the role of gravity ranges from small (Sg � 0:01) to sig-
nificant, but not dominant (Sg � 1). However, the obser-
vation of Stokes similarity in our results (despite the fact
that Sg changes by fivefold to sixfold in each St range)

K

K

FIG. 2 (color). Stokes-similarity results shown in two panels
for clarity. (a) St similarity for droplets with St � 0:01–0:3
(circles) and St � 0:7–1:1 (triangles). Plots for other St groups
from Fig. 1, 3m-30Hz, are shown in the background for com-
parison. The marker colors represent ��r� from different experi-
ments (blue, 3m-20Hz; green, 3m-30Hz; red, 5m-20Hz; cyan,
5m-30Hz). (b) St similarity for St � 0:3–0:7 (circles) and St �
1:1:–1:5 (triangles).
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suggests that the role of gravity in this work is limited
relative to that of turbulence for the range of conditions
considered.

The experiments described here provide support for the
inertial clustering mechanism, and are in qualitative agree-
ment with theoretical predictions. Clustering distinct from
that expected for mixing of fluid particles is observed at
dissipative scales, where fluid acceleration and vorticity
reach a maximum. The magnitude of the clustering in-
creases monotonically with droplet St, for St & 1, where
St is a parameter characterizing coupling between particles
and the fluid. Finally, under distinct flow conditions and
with varying droplet sizes, the dissipation-range clustering
is observed to exhibit Stokes similarity.
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