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We study the deviations from the limit distributions in extreme value statistics arising due to the finite
size (FS) of data sets. A renormalization method is introduced for the case of independent, identically
distributed (iid) variables, showing that the iid universality classes are subdivided according to the
exponent of the FS convergence, which determines the leading order FS shape correction function as well.
It is found that, for the correlated systems of subcritical percolation and 1=f� stationary (�< 1) noise, the
iid shape correction compares favorably to simulations. Furthermore, for the strongly correlated regime
(�> 1) of 1=f� noise, the shape correction is obtained in terms of the limit distribution itself.
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Extreme value statistics (EVS) has been much studied in
engineering [1], finance [2], and environmental sciences
[3] where extreme events may have disastrous consequen-
ces. Recently, interest in EVS has also been growing in
physics, e.g., in spin glasses [4], interface fluctuations
[5,6], and front propagations [7]. Unfortunately, the use
of EVS is hampered by the cost of acquiring good quality
statistics: EVS is derived from the extremes of subsets of a
data set, requiring abundant data for reasonable statistics.
Data analysis is further complicated by the fact that while
the EVS limit distribution may be known, the convergence
with increasing sample size is slow. Clearly, a detailed
finite-size (FS) analysis providing the convergence rate
and shape corrections to the limit distribution is much
needed. While for independent, identically distributed
(iid) variables FS studies exist in the mathematical litera-
ture [8], for correlated systems the convergence rate and
shape corrections are known only in a few cases, such as
Brownian motion [9] and random matrix problems (see,
e.g., [10]).

In this Letter we use analytic and phenomenological
approaches, combined with simulations, to investigate FS
scaling in EVS. First, we develop a renormalization group
(RG) method, in which the limit distribution is a fixed point
of the flow in function space of the finite-sample EVS
distributions. Applied to iid variables, the approach pro-
vides an intuitive and accessible summary of the mathe-
matical results for the leading FS correction, including the
explicit forms of the shape corrections (scaling functions).
Next, we consider two systems with correlated variables,
namely percolation and 1=f� signals. We numerically
study the distribution of the largest clusters in subcritical
percolation. While the limit distribution is known to be an
iid problem [11,12], we find that even the FS correction fits
the iid prediction well. In the case of the maximum statis-
tics of 1=f� signals, 0 � �< 1 corresponds to the weakly
correlated regime, with an iid limit distribution [13]. Our
simulations indicate that the FS properties are very close to
the iid case for 0 � � & 0:5, but deviations appear for
0:5 & �< 1. For �> 1, however, the convergence be-

comes fast (power law) and we can show that, under a
mild assumption, the FS shape correction is given in terms
of the limit distribution and, furthermore, the order as well
as the shape of the correction strongly depends on the way
the distribution is scaled.

The case of iid variables has been extensively studied
[14], and we begin our FS study by a reinterpretation of the
original derivation of the extreme limit distributions [15].
Consider random variables z1; z2; . . . ; zN with parent den-
sity ��z� and integrated distribution ��z� �

R
z
�1 ��s�ds.

The maximum of the zi has the integrated distribution
�N�z�, and the basic observation [15] is that if, after an
appropriate scale change z � aNx� bN , �N�z� tends to a
limit distribution M�x� as N ! 1, then the same limit
should be reproduced for another N0 � pN. This require-
ment can be cast in the form

 M�x� � �R̂pM��x� 	 Mp�apx� bp�; (1)

where the right-hand side defines R̂p, which can be inter-
preted as a RG operator based on the analogy with critical
phenomena. Indeed, the operation of raising to power p >
1 and shifting by bp eliminates the irrelevant small argu-
ment part of the parent distribution, ap rescales the relevant
‘‘degrees of freedom,’’ and the fixed point condition,
Eq. (1), determines the limit distribution.

Equation (1) is solved by ap � p�, bp � ��1�p� � 1�,
and M�x� � exp���1� �x�1=��, where the final scale of x
and the position of the distribution are set by the stand-
ardization M�0� � M0�0� � 1=e. We thus have a line of
fixed points parametrized by �, andM�x� is the generalized
extreme value distribution. The traditional universality
classes are called Fréchet (power decay of parent at infin-
ity), Fisher-Tippett-Gumbel (FTG, faster than power de-
cay), and Weibull (power decay at a finite cutoff), and
correspond to � > 0;� 0; <0, respectively.

In the RG picture, the FS behavior is determined by the
action of the RG transformation on the neighborhood of the
fixed point M�x�. Thus, we consider distributions as
M��x� � M��x� � �x��, assuming � is small. Standard-
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ization implies  �0� �  0�0� � 0, and the scale of � is set
by  00�0� � 1. Our central observation is that the large N
behavior corresponds to the eigenvalue problem

 M�0 �x� � �R̂pM���x� � Mp
� �ap;�x� bp;��; (2)

where linearization in � is understood, ap;�; bp;� differ from
the fixed point values ap; bp determined above toO���, and
the eigenvalue is � � �0=�. Using the fixed point relation
(1), we obtain ��=ap� 00�x� �  00�apx� bp� whose solu-
tion with p-independent  �x� reads as

  �x� �
�1� �x��

0=��1 � ��0 � ��x� 1

�0��0 � ��
(3)

 � � p�
0
: (4)

Thus we see that, for a given universality class parame-
trized by �, a new parameter �0 emerges characterizing the
eigenvalues and eigenfunctions of Eq. (2). Note that shape
corrections equivalent to  have been obtained by direct
methods in the mathematical literature [8,16].

In order to link the RG result with the N dependence, we
write � � �N and use (4) to find �0 � �pN � p�

0
�N .

Assuming a power form one obtains

 �N / N�0 ; (5)

or, more precisely, d lnj�N j
d lnN ! �0. Thus �0 is the FS conver-

gence rate (stability implies �0 � 0). To find �N and thus �0

for a given parent, ��z�, we study the integrated distribu-
tion function �N�z� with the shift and scale parameters
bN � h�lnN�, aN � h0�lnN� expressed through h�y� �
��1�e�e

�y
�. Close to the fixed point one has

 MN�x� � �N�aNx� bN� 
 M�x� �N �x��; (6)

and differentiating � ln�� lnMN�x�� twice at x � 0 gives,
to leading order, daN=dbN ! �, and at next order

 �N � �� daN=dbN � N
�0 : (7)

The convergence rate �0 is now determined and the pertur-
bation function  �x� follows from (3). This gives a prac-
tical meaning to the results from RG theory.

For data analysis it is convenient to represent the FS
correction with zero mean hxi and unit variance �2

x (finite
for � < 1=2) by using the variable y � �x� hxi�=�x. Here
we consider the FTG class (� � 0) with limit distribution
M�0��y� � e�e

��ay�b�
where a � �=

���
6
p

, b � �E, the latter
being Euler’s constant. Writing MN�y� 
 M�0��y� �
�NM�1��y�, we have for the correction

 M�1��y� � P�0��y��e�
0�ay�b� � �y� 	�=a�02; (8)

where P�0��y� � M�0��y�0, � � ��1� �0� b���1��0�
a , with

��z� � �0�z�=��z� and 	 � ���1� �0�. For �0 � 0,
Eq. (8) becomes [
�z� denotes Riemann’s 
 function]

 M�1��y� � P�0��y��a3�y2 � 1� � 2
�3�y�=2a2: (9)

We illustrate the above results on FTG class parents with
the commonly found asymptote 1���z� / e�z

�
=z� (� >

0). Using Eq. (7), for � � 1 we have �N 
 ���
1�=�� lnN�, so �0 � 0. For � � 1, � � 0 (exponential dis-
tribution) one finds �N 
 1=2N and �0 � �1, while for
� � 1 and � � 0, we have �N 
 ��=ln2N, so again �0 �
0. Thus generically �0 � 0, with FS shape correction given
by (9) and the perturbation decaying logarithmically.
Faster, 1=N, convergence is seen only for � � 1, � � 0
where Eq. (8) applies with �0 � �1.

As an application, we studied the FS corrections to the
distribution of the largest cluster size on a square lattice in
subcritical site percolation, p < pc, where pc 
 0:592 . . .
is the critical occupation probability. Because of the finite
correlation length, clusters in a large system are nearly
independent. Then, as shown by an intuitive RG picture of
[11] and by other methods in [12], the size distribution of
the largest cluster obeys FTG, provided the inherent dis-
creteness of the problem is treated appropriately. It remains
an open question, however, whether the FS corrections can
also be described by iid theory. To answer this question, we
first note that the asymptote of the distribution of the
cluster size s is s�1 exp��s=s
� [17], where s
 is the cutoff
size. This asymptote corresponds to � � � � 1 in the
example of the previous paragraph, so (9) gives the FS
scaling function and �N 
 �1=ln2N. To compare theory
with simulation, we collected statistics for the largest
cluster in systems of sizes L � 500 and 1000 in an en-
semble of 
107 runs, resulting in a relatively smooth
histogram. The shape correction was then obtained by
subtracting the empirical histogram from the FTG distri-
bution, multiplied by ln2N, where N is the average number
of clusters. The result is compared with the iid theory in
Fig. 1. As can be seen the curves match surprisingly well,
suggesting that the iid theory is also relevant for the FS
corrections.

Next, we treat correlated time signals, h�t�, and study the
FS effects on the distribution of their maxima hm. To have
control on correlations, 1=f� noise is chosen, where the
Fourier amplitudes are independent Gaussian variables,
with variance f��, and uniform, random phase [18]. For
� � 0, the process is white noise, for 0<�< 1 it is
stationary with correlations decaying as t��1, while for
�> 1 the fluctuations of the signal diverge as t! 1. The
distribution of hm has recently been studied intensively; see
[19] and references therein. The main features to be re-
called here are that the FTG distribution applies for 0 �
�< 1 [13] while, for �> 1, nontrivial distributions
emerge whose shape depends on boundary conditions
and the reference point from where the maximum is mea-
sured. Here we concentrate on the FS correction of the
distribution of maxima, and to be specific, the maximum is
measured from the mean of a periodic signal. First, con-
sider �< 1. Figure 2 shows the FS shape correction for
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� � 0:4 together with the iid prediction. The latter comes
from a Gaussian parent, thus �N 
 1=2 lnN, �0 � 0. The
theoretical curve is �1�y� � �M�1��y�0=2 by Eq. (9), cor-
responding to a lnN magnification factor in the simulation
curves which visibly approach �1�x�. A similar approach
can be seen for all � & 0:5. The inset, showing the skew-
ness for finite systems, also suggests that the leading FS
correction may be described by the iid theory for � & 0:5.
Beyond 0.5, the deviation from the iid correction grows, so
while the limit is FTG, the question of whether the correc-
tion is of iid type remains open. Note that EVS in a model

of quantum chaos [10] provides an example where the
correlations are weak enough to yield a FTG limit distri-
bution, but the FS corrections are distinct from the iid
result.

We now turn to �> 1, where hhmi diverges as hhmi �
N���1�=2 [20], and the approach to the limit distribution
improves from logarithmic to power-law. This effect can
be seen in our simulations as well as in the exact results
[6,21] for random walks (� � 2). The limit distribution for
� � 2 is given by the Airy distribution �Ai�z� with z �
hm=

����
N
p

while the first correction to scaling is [9]

 ��z� 
 �Ai�z� ��0Ai�z�=
�������
2N
p

: (10)

The simplicity of the above result calls for a simple expla-
nation. Indeed, Eq. (10) follows from the assumption that
the shape of the distribution relaxes faster than its position.
To see this for arbitrary �> 1, we note that the nth
cumulant of hm scales for large N as �n � Nn� with � �
��� 1�=2 [20]. Next, we write the corrections to scaling of
�n-s as

 �n � Nn���0
n � �

1
nN
�!n � � � ��; (11)

and assume that !n > !1 for n > 1. This assumption
implies that the shape of the function relaxes faster than
its position. Introducing now the scaled variable z �
hm=N

� and expanding the cumulant generating function
of hm in N�!1 yields the scaled distribution function
�N�z� � N�PN�N�z� to first order as

 �N�z� 
 ��z� � �1
1�0�z�N�!1 ; (12)

where ��z� is the scaling function in the N ! 1 limit. For
� � 2 one has !1 � 1=2 and �1

1 � �1=
���
2
p

[9]; thus,
Eq. (10) is recovered.

The choice of scaling variable may change both the rate
and amplitude of the correction term. For example, a
natural choice is to scale by the average [x � hm=hhmi,
�N�x� � hhmiPN�hhmix�]. It yields the same rate of con-
vergence, but it does alter the scaling function of the first
order correction. Indeed, using x � hm=hhmi and expand-
ing the cumulant generating function in 1=N!1 results in

 �N�x� 
 ��x� � ��1
1=�

0
1���x� 1���x��0N�!1 : (13)

The limiting function ��x� for � � 2 and its correction
�1�x� with an amplitude 0.1 are shown in the upper panel
of Fig. 3. Since �1�x� has two zeros, �N�x� is nearly fixed
at two points, so the main correction comes from the
central weight shifted to the tails of the distribution.

If the main FS effect is due to hhmi then the use of the
scaling variable y � �hm � hhmi�=

������
�2
p

eliminates these
corrections and, as seen in Fig. 3, improves convergence
dramatically. The shape correction may be calculated by
assuming that !n > !2 for all n > 2. This means that the
leading FS correction comes from �2 and the cumulant
generating function to first order in 1=N!2 yields
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FIG. 2 (color online). FS shape correction to the maximum
distribution in 1=f� noise with � � 0:4. The solid line is the iid
theory �1�y� � �M

�1��y�0=2 from Eq. (9), while the others are
simulations for system sizes N � 25; 27; 29; 211; 215, with mini-
mum decreasing in this order. The inset shows the skewness of
the maximum distribution for various sizes slowly converging to
the FTG value �0
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FIG. 1 (color online). Finite-size analysis for the largest clus-
ters in subcritical percolation. The prediction from iid theory
(solid line) is �1�y� � M�1��y�0 from Eq. (9). The simulation
results (dotted line) were obtained with occupation probability
p � 0:25 and system sizes L � 500, 1000.
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 �N�y� 
 ��y� � ��1
2=2�0

2��y��y� ��0�y��0N�!2 : (14)

As seen, the shape correction can again be expressed in
terms of the limit distribution. The scaling function �1�y�
displayed in Fig. 3 has three zeros which restrict possible
deviations from the limit distribution to higher order. In
addition, we found numerically !2 
 3=2, resulting in
such a fast convergence that the curves with various N-s
cannot be distinguished within linewidth.

We can make an intuitive proposition for the!n-s, based
on an analogy with the cumulants �n�w2� of the roughness
w2 of 1=f� signals [18]. There, the large N asymptote can
be rewritten as �n�w2� � hw2i

n�1� bnhw2i
�1�n��=���1��.

Now assuming the same exponent �1� n��=��� 1� for
�n�hm�, and reverting to theN dependence we get!n��� �
�n�� 1�=2 for the FS exponent. For Brownian motion we
recover !2�2� � 3=2, in accordance with simulations.
Furthermore, the criterion !n <!n�1 is satisfied, so
!2��� � �� 1=2 is the candidate for the FS exponent.
Since !n��� increases with �, the convergence is expected

to improve for larger �. Indeed, our simulations for � � 4
show that the same convergence as in the lower panel of
Fig. 3 can already be obtained in the x � hm=hhmi scaling
since !1�4� � !2�2�.

Let us conclude with two remarks. First, higher than
leading FS corrections may also be of importance. While
next to leading order results for the iid case are available
[16], we actually worked out an algorithm to arbitrary
orders, which will be presented elsewhere. Second, we
expect that the RG approach will be useful for sorting
out the universal aspects of EVS in correlated systems.
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FIG. 3 (color online). Demonstration of the increasing speed
of convergence to the limit distribution �, for � � 2. Results for
system sizes N � 16; . . . ; 16 384 are shown using scaling vari-
ables x � hm=hhmi and y � �hm � hhmi�=
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p

in the upper and
lower panels, respectively. �1 is the shape correction function.
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