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Although it is widely accepted that ‘‘no-broadcasting’’—the nonclonability of quantum information—
is a fundamental principle of quantum mechanics, an impossibility theorem for the broadcasting of
general density matrices has not yet been formulated. In this Letter, we present a general proof for the no-
broadcasting theorem, which applies to arbitrary density matrices. The proof relies on entropic consid-
erations, and as such can also be directly linked to its classical counterpart, which applies to probabilistic
distributions of statistical ensembles.
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Concepts from quantum information theory have been
shown to provide new insights into profound topics relating
to fundamental features of quantum mechanics, such as the
uncertainty principle [1], interference [2], entanglement
[3], and the connection to the second law of thermody-
namics [4]. A hallmark of quantum mechanics is that
quantum information cannot be cloned [5–7]. The enor-
mous impact of this theorem, which was called the ‘‘no-
broadcasting’’ theorem, is reflected by several studies that
focus on various aspects of the nonclonability of quantum
information [8–12].

Although it is widely accepted that no-broadcasting is a
fundamental principle of quantum mechanics, an impossi-
bility theorem for the broadcasting of general arbitrary
(i.e., finite- as well as infinite-dimensional) density matri-
ces has not yet been formulated. In the literature two
separate proofs for no-broadcasting are to be found, one
applies only to pure states (the no-cloning theorem) [5]
while the other applies only to invertible density matrices
[6]. These two classes of states exclude each other, and
hence, trivially, none of the two proofs is derivable from
one another. (Although for the finite-dimensional case, a
generalization for noninvertible density matrices exists
[7].)

In this Letter we present a general proof for the no-
broadcasting theorem which applies to arbitrary density
matrices. Our proof relies on fundamental principles from
information theory, mainly on entropic considerations. As
such, it also enables us to directly link the theorem to its
classical analogue which applies to probabilistic distribu-
tions of statistical ensembles [13].

A general broadcasting machine consists of a source
system whose unknown state � is to be broadcast, a target
system onto which the source state should be copied, and
an auxiliary system, or a ‘‘machine,’’ which interacts uni-
tarily with the source and target systems. Labeling the
three subsystems by subscripts s, t, and m, respectively,
the broadcasting process then reads

 �in � �s � �t ��m ! �out; (1)

where the final state �out obeys

 Tr t;m��
out� � Trs;m��

out� � �; (2)

where Trt�s�;m denote partial traces over the target (source)
and auxiliary systems. In what follows we show that no
unitary (quantum mechanical) transformation which per-
forms process (1) exists for arbitrary source states.

Our proof is based on the concept of relative entropy.
The relative entropy of a state �1 with respect to another �2

[14]

 S��1j�2� � Tr��1�log�1 � log�2�� (3)

is a measure of the ‘‘closeness’’ between the two. For some
pairs of states (‘‘perfectly distinguishable’’ ones) the rela-
tive entropy is ill defined. This happens if (and only if)
ker��2� � ker��1�, yielding S��1j�2� � 1 [15]. For what
follows we consider only the case S��1j�2�<1, and
address in detail the problematic issues which may arise
from this ill-definiteness, later on.

One important property of relative entropy is that it is
invariant under dynamical changes. The evolution of a
general quantum system represented by a density operator
� is given by ��t� � U�t���0�Uy�t�whereU�t�may be any
unitary operator. Since the relative entropy is defined by a
trace operation, it is easy to check that it is conserved under
time evolution, namely

 S��1�t�j�2�t�� � S��1�0�j�2�0��: (4)

Let us now consider two general broadcasting processes
(1), whose initial states are given by �in

i � �i;s � �t ��m,
where i � 1, 2, �i are arbitrary density matrices, and the
initial states of the target and auxiliary systems, � and �,
are the same for both processes. The relative entropy of the
two states is
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 S��in
1 j�

in
2 � � Tr��1;s � �t ��m�log�1;s 	 log�t 	 log�m

� log�2;s 	 log�t 	 log�m��

� Trs��1;s�log�1;s � log�2;s��Trm;t��t ��m�

� Trs��1;s�log�1;s � log�2;s�� � S��1j�2�:

(5)

That is, the relative entropy of the two initial states is
exclusively given by the relative entropy of the two source
systems. Using this and the conservation of relative en-
tropy in time (4), it is clear that

 S��1j�2� � S��in
1 j�

in
2 � � S��out

1 j�
out
2 �: (6)

The relative entropy of the final states of any two broad-
casting processes is equal to the relative entropy of the
sources prior to copying.

We now proceed to show that Eq. (6) is violated for
broadcasting processes. To do this, we invoke the theorem
of monotonicity of relative entropy [16] which reads

 S��1;ABj�2;AB� 
 S��1;Bj�2;B�; (7)

where �1;AB and �2;AB are two density operators of a
composite system AB, whereas �1;B and �2;B denote the
corresponding density operators of a subsystem B. The
equality holds if and only if the condition

 log�1;AB � log�2;AB � IA � �log�1;B � log�2;B�; (8)

evaluated after a restriction to the support of �2;AB, is
satisfied, and IA denotes the identity operator of subsystem
A [17]. Intuitively, Eq. (8) means that ignoring part of two
physical systems reduces the ‘‘distance’’ between them,
unless the ignored part contains no information at all.
Using (7), we can establish a lower bound for the relative
entropy of the two final states �out

i . The monotonicity
inequality (7) implies that the final states fulfill

 S��out
1 j�

out
2 � 
 S��out

1;kj�
out
2;k�; (9)

for k � s, twhere �out
i;s�t� denotes Trt�s�;m��out

i �. According to
Eq. (8), the equality in (9) holds if and only if the equalities

 log�out
1 � log�out

2 � �log�out
1;s � log�out

2;s � � It � Im

� Is � �log�out
1;t � log�out

2;t � � Im; (10)

evaluated on the support of �out
2 , are satisfied. Under broad-

casting, Eq. (10) thus reads

 log�out
1 � log�out

2 � �log�1;s � log�2;s� � It � Im

� Is � �log�1;t � log�2;t� � Im: (11)

The above condition, however, is satisfied only if �1 and
�2 are diagonal, reflecting the fact that a realization of a
broadcasting machine may be possible only provided that
all its input states are mutually commuting and the basis in
which they are diagonal is known [18]. For any two non-
commuting arbitrary states the inequalities in (9) are strict,

that is,

 S��out
1 j�

out
2 �> S��1j�2�; (12)

in contradiction with equality (6). We have therefore
shown that under broadcasting, the monotonicity of rela-
tive entropy is in conflict with quantum dynamics, render-
ing universal broadcasting impossible.

To complete our proof, let us consider the case of
S��1j�2� � 1, and show that the no-broadcasting theorem
may be extended to this case as well [19]. This is done
using a proof by contradiction. Let us first assume the
existence of a machine capable of broadcasting states
with infinite relative entropy, and consider two such non-
commuting states �1 and �2 for which S��1j�2� � 1.
Because of the linearity of the broadcasting procedure
(containing only unitary operations and partial traces), it
immediately follows that the machine is also capable of
broadcasting the mixture�mix � ��1 � �1� ���2 for any
0< �< 1. However, our main proof rules out the exis-
tence of a machine which broadcasts both �1 and �mix,
since S��1j�mix�<1 [20]. Therefore, the existence of a
machine which broadcasts both�1 and�2 is also ruled out,
contradictory to our initial assumption, and this completes
the proof.

At this point, we turn to show that the proof given above
enables a direct link between the quantum theorem and its
classical analogue [13]. The classical no-broadcasting
theorem states that it is impossible to broadcast classical
probability distributions with unit fidelity in a deterministic
manner once infinitely-narrow distributions (i.e., delta-
function distributions) are excluded; assuming Liouville
evolution for the broadcasting process, the monotonicity of
the classical relative entropy (the Kullback-Leibler infor-
mation distance) between two classical probability distri-
butions P1�x; p; t� and P2�x; p; t�, defined by [21]

 K �P1jP2� �
Z
dxdpP1�logP1 � logP2�; (13)

is in conflict with broadcasting. (We note here, however,
that approximate classical broadcasting machines may in
principle be realized with any desired degree of accuracy
[22].)

As we shall now show, the quantum no-broadcasting
theorem translates in the @! 0 limit to its classical ana-
logue if Hamiltonian dynamics, which is a subclass of
Liouville dynamics, is concerned. This will be accom-
plished in two steps. First, we show that for every classical
probability distribution one can construct a corresponding
density matrix such that in the classical limit, quantum
relative entropy reduces to classical relative entropy.
Second, we show that quantum (unitary) dynamics reduces
in the classical limit to Hamiltonian dynamics under this
correspondence. Even though these two statements seem
reasonable, even expected, to the best of our knowledge
they have not yet been shown explicitly.
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As a preliminary step, we make a classical-quantum
correspondence by assigning to each classical probability
distribution over phase space P�x; p� (we drop the time
index t), a quantum state according to

 � �
Z
dxdpP�x; p�j�ih�j; (14)

where j�i is a coherent state with � � �1=
���������
2@!
p

��!x�
ip� (we shall fix ! � 1 in the following).

This correspondence is of course the identification of
classical probability distributions with the P represen-
tations [23] of density matrices. Although the P repre-
sentation is known to be problematic, being highly singu-
lar, negative, or even undefined, we stress here that these
types of states are not of our concern here, since in our
correspondence, the P distributions we consider are
bona fide classical distributions.

First, we show that in the classical limit, the relative
entropy of two density matrices constructed from two
classical statistical distributions by (14) reduces to the
relative entropy of the two distributions, namely

 lim
@!0

S��1j�2� �K�P1jP2�: (15)

Expanding the logarithms appearing in the expression for
the quantum relative entropy in a Taylor series and then
tracing term by term, it becomes sufficient to show that

 lim
@!0

Tr��1��2=@�
n�1� �

Z
dxdpP1�x; p�P

n�1
2 �x; p�;

(16)

where n 2 Z�, and the extra @ factors appearing in (16),
are introduced into the relative entropy by rewriting
( log�1 � log�2) as [ log��1=@� � log��2=@�]. Inserting
(14) into the left-hand-side of Eq. (16), we have

 lim
@!0

Tr��1��2=@�
n�1� �

Z
dx0dp0P1�x0; p0�

Z �Yn�1

i�1

dxidpiP2�xi; pi�
�

lim
@!0

exp���2@��1uyVu�
�2�@�n�1 : (17)

where uy � �x0; p0; x1; p1; � � � ; xn�1; pn�1� and V, pre-
sented in a �2 2� � �n n� block form is

 V�2n2n� �

1 B 0 � � � 0 BT

BT 1 B 0 � � � 0

0 BT 1 B 0 ..
.

..

.
0 . .

. . .
. . .

.
0

0 � � � 0 BT 1 B
B 0 � � � 0 BT 1

0
BBBBBBBBB@

1
CCCCCCCCCA
�nn�

;

(18)

1 and 0 being the (2 2) unit and zero matrices, respec-
tively, and BT is the transpose of B � � 1

2 �1� �y�. To
evaluate the limit, we note that V is a normal matrix and as
such it can be written in the form V � UDUy where D is
its diagonal form and U is unitary with orthonormal eigen-
vector basis as its columns. Computation of these eigen-
vectors yields

 e kj �
1������
2n
p

��1�k

i

� �
�

1
!j

!2
j

..

.

!n�1
j

0
BBBBBBB@

1
CCCCCCCA
; (19)

with corresponding eigenvalues �kj � 1�!��1�k

j where
!j � e2�ij=n, k � 1, 2 and j � 0; . . . ; n� 1. Noting that
�1;0 � �2;0 � 0, the term uyVu in the exponent of (17)
can thus be simplified to uyVu � vyDv �P2
k�1

Pn�1
j�1 �kjv2

kj, with vy � uyU. The limit thus be-
comes

 lim
@!0

exp���2@��1vyDv�
�2�@�n�1 �

Yn�1

i�1

��xi � x0���pi � p0�:

(20)

This completes the derivation of Eq. (16), and thus proves
(15).

Next, we turn to prove that the limit given in (15) holds
under time evolution. This is achieved by showing that
quantum dynamics is reduced to Hamiltonian dynamics in
the @! 0 limit, provided an appropriate correspondence
between classical and quantum systems is made. The proof
is as follows.

In classical mechanics, a statistical distribution
PC�x; p� evolving in time (the time index t is suppressed)
under some Hamiltonian H�x; p� obeys the well-known
Liouville equation [24]. In terms of the characteristic
(Fourier transformed) function defined by PC�x; p� �R
d�d� ~PC��;��e

i��x��p�, and an analogous definition
for H�x; p�, the equation translates to
 

@t ~PC��;�� �
Z
d�0d�0 ~PC��0; �0� ~H��� �0; ���0�

 KC��;�; �0; �0�; (21)

with a ‘‘classical kernel’’ KC � �0�� ��0. Accordingly,
a general quantum state (also written in characteristic
form)

 � �
Z
dxdp

Z
d�d�ei��x��p� ~PQ��;��j�ih�j; (22)

whose evolution is governed by the Hamiltonian [25]
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 Ĥ �
1

2�@

Z
dxdp

Z
d�d�ei��x��p� ~H��;��j�ih�j

(23)

obeys the von Neumann equation @t�� i@�1��;Ĥ�. Ex-
pressing the equation in terms of ~PQ��;�� and ~H��;��,
the equation takes the form (21) but with a ‘‘quantum
kernel’’ KQ �

2
@
e
@

2��
0����0���0����0�� sin@2 ��

0���0��. It is
easy to check that lim@!0KQ � KC; thus, we have shown
that every classical system may be viewed as a limiting
case of an appropriately constructed quantum system.
Together with the result of the classical limit of the relative
entropy (15), the no-broadcasting theorem which states
that the monotonicity of relative entropy of two density
operators is in conflict with quantum dynamics under
broadcasting, translates in the classical limit to its classical
version [13], stating that the monotonicity of (classical)
relative entropy is in conflict with Hamiltonian dynamics.

As with other results from quantum mechanics that have
their analogies and parallels in classical probabilistic theo-
ries [22,26–29], the classical no-broadcasting theorem can
also be recovered from its quantum version. This reduction
is attributed to the fact that both quantum and classical
information theories are based on common grounds and are
described by analogous measures.

We have thus shown that no-broadcasting is indeed a
general principle, originating from fundamental concepts
of information theory, in particular, the monotonicity of
relative entropy.

We believe that this may help to gain a better under-
standing of the relations between nonclonability and re-
versibility properties both in quantum and in classical
physics. This proof may also provide a further clarification
on ‘‘quantumness’’ versus ‘‘classicality’’ in that context, in
particular, in connection with a recent result by Walker and
Braunstein [22], who proved the realizability of approxi-
mate classical broadcasting of statistical distributions with
any desired degree of accuracy.
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