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We experimentally demonstrate a simple scheme for generating a four-photon entangled cluster state
with fidelity over 0:860� 0:015. We show that the fidelity is high enough to guarantee that the produced
state is distinguished from Greenberger-Horne-Zeilinger, W, and Dicke types of genuine four-qubit
entanglement. We also demonstrate basic operations of one-way quantum computing using the produced
state and show that the output state fidelities surpass classical bounds, which indicates that the
entanglement in the produced state essentially contributes to the quantum operation.
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There has been much interest in special multipartite
entangled states, called cluster states, because they are
used as a resource for one-way quantum computing
(QC), in which computation proceeds by a sequence of
single-qubit measurements with classical feedforward [1].
Recently, several schemes for preparing cluster states were
demonstrated [2–8]. They have shown that the produced
states have genuine multipartite entanglement and/or given
the proof-of-principle demonstration of one-way QC.

In this Letter, we report an experimental demonstration
of a simple scheme for preparing a four-photon cluster
state

 jC4i �
1
2�jHi1jHi2jHi3jHi4 � jHi1jHi2jVi3jVi4

� jVi1jVi2jHi3jHi4 � jVi1jVi2jVi3jVi4�: (1)

Here, jHi (jVi) represents the state of a photon with
horizontal (vertical) polarization. The state fidelity of the
produced state was over 0:860� 0:015. This guarantees
that not only the produced state has genuine four-qubit
entanglement, but also the state is distinguished from
classes of genuine four-qubit entangled states including
Greenberger-Horne-Zeilinger (GHZ), W, and Dicke types
of entangled states. In order to distinguish the produced
state from four-qubit Dicke states, the state fidelity should
be over 0.75 [9], which was not achieved in previous four-
photon experiments [2–5]. Using the high-fidelity cluster
states, we also demonstrated basic operations of one-way
quantum computing and obtained high fidelities for output
states. Existing demonstrations of one-way QC [2,3,5]
gave the output state fidelities of quantum operations
only as numeric data. We further evaluate whether the
high fidelities of the output states really come from the
existence of entanglement of cluster states or not. For that
purpose, we propose a classical bound on the fidelity as a
solid benchmark for entanglement-based quantum infor-
mation processing. Then, we show that our experimental
results of the basic operations of one-way QC surpass the
classical bounds, which indicates that the entanglement of

cluster states really contributes to one-way QC. The bench-
mark can be generally useful for one-way QC and other
kinds of experiments of quantum information processing.

Our scheme for preparing jC4i (Fig. 1) is a slight modi-
fication of the scheme for preparing j�i � 1

2 �

��jHHi � jVVi�jHHi � �jHVi � jVHi�jVVi	 in [10],
which is a resource for teleportation-based controlled-
NOT gate [11]. Here, jHi (jVi) represents the state of a
photon with horizontal (vertical) polarization. Our scheme
has fewer requirements and/or a greater success probability
compared to the schemes for existing four-photon experi-
ments [2–5]. It is constructed from four photons produced
by parametric down conversion (PDC), polarizing beam
splitters (PBSs), half-wave plates (HWPs), and conven-
tional photon detectors. It does not need polarization de-
pendent beam splitters [3], nor the subwavelength stability
of the optical paths [2,4,5].

We use spontaneous parametric down conversion for the
preparation of the entangled photon pair [12] and two
single photons (Fig. 2). Ultraviolet pulse with a central
wavelength of 395 nm, an average power of 220 mW from
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FIG. 1 (color online). Experimental setup for preparing jC4i.
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a frequency-doubled mode-locked Ti:sapphire laser (wave-
length, 790 nm; pulse width, 140 fs; repetition rate,
76 MHz) pumps a pair of 1 mm-thick BBO (�–barium
borate, type-I) crystal for PDC. The group delay is com-
pensated by thick quartz crystals (12.8 mm) to erase the
information on the origin (the first or the second BBO) of
the photon pairs. The relative phase between H and V
polarizations is adjusted by a pair of thin quartz crystals
(0.6 mm). The typical twofold coincidence rate of en-
tangled photon pairs is around 2500=s and the visibility
is 
97%. The temporal overlap is adjusted by moving
mirrors on motorized stages (delays in Fig. 1). The thin
quartz crystal pairs in modes 2 and 4 are placed to com-
pensate additional phase shifts. The spectral filtering is
achieved with narrow bandwidth interference filters (IFs)
with bandwidth of 2.7 nm (FWHM). Photon detectors
(silicon avalanche photodiodes) are placed after single-
mode optical fibers to select a single spatial mode to ensure
a high visibility. Polarization correlations are recorded by
coincidence counting among four photon detectors for
various angles of quarter-wave plates (QWPs) and
HWPs. The typical fourfold coincidence rate is around
100 per hour.

We obtain lower bounds on the fidelity F of the pro-
duced state using methods with fewer measurement set-
tings [9,13,14] compared to the method for obtaining the
exact fidelity. We denote X, Y, and Z for Pauli matrices �x,
�y, �z, respectively. When a self-adjoint operator B sat-
isfies

 jC4ihC4j � B; (2)

we can obtain a lower bound on the fidelity by F �
Tr�jC4ihC4j�	 � hBi � Tr�B�	 [9]. The operators

 B2 :� 1
4�ZZII � IZXX� ZIXX� XXZI � IIZZ

� XXIZ� � 1
21; (3)

and

 B4 :� 1
8�XXZI � IZXX� ZIXX� XXIZ� YYZI

� IZYY � ZIYY � YYIZ� (4)

satisfy Eq. (2). Therefore, we can obtain lower bounds on

the fidelity by measuring expectation values hB2i or hB4i.
We need two measurement settings XXZZ and ZZXX for
B2 [13,14], and four measurement settings XXZZ, ZZXX,
YYZZ, and ZZYY for B4 [9]. We can obtain a higher lower
bound of the fidelity using B4.

Figures (3a)–(3d) show the 16 possible fourfold co-
incidence probabilities for measurement settings XXZZ,
ZZXX, YYZZ, and ZZYY, respectively. Here we denote
j�i � 1

��

2
p �jHi � jVi�, and jR=Li � 1

��

2
p �jHi � ijVi�.

Figures (3a0)–(3d0) show the corresponding coincidence
probabilities for the ideal pure four-photon cluster state
jC4i. The error bars are determined by assuming
Poissonian counting statistics. Deviation from the ideal
case is mainly due to imperfection of indistinguishability
of photons and multiphoton emission events with five or
more photons. From the fourfold coincidence probabilities
in Figs. 3(a) and 3(b), we can calculate hB2i to obtain F �
Tr�B2�	 � 0:791� 0:030. If we use all the data in
Figs. (3a)–(3d) for the four settings, we obtain a much
higher bound F � Tr�B4�	 � 0:860� 0:015.

The observed fidelity F > 1=2 assures that the produced
state has genuine four-qubit entanglement. Moreover, the
high fidelity enables us to discriminate it against several
types of genuine four-qubit entangled states. In Ref. [9], it
was shown that we can discriminate classes of genuine
four-qubit entanglement by extending Schmidt number

FIG. 3. Fourfold coincidence probabilities for measurement
settings (a) XXZZ, (b) ZZXX, (c) YYZZ, and (d) ZZYY. The
ideal cases are shown in (a’)–(d’).
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FIG. 2 (color online). Experimental setup for preparing two
single photons and an entangled photon pair.
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witness [15] to multiqubit systems. Here we sketch the
main idea of the discrimination method. Consider the three
ways of partitioning the four qubits 1, 2, 3, and 4 into two
pairs of qubits, (12)(34), (13)(24), and (14)(23). For sim-
plicity, we denote them as 12, 13, and 14, respectively. A
pure state of the four qubits can be regarded as a bipartite
state for partition 1j, and let r1j be its Schmidt rank. Since
the Schmidt rank never increases under local operations
and classical communication even probabilistically, the set
of the ranks (r12, r13, r14) is a signature of the state that can
be regarded as a (crude) measure of entanglement. The
cluster state jC4i has the signature (2, 4, 4), while the four-
qubit GHZ state jGHZi � 1

��

2
p �j0000i � j1111i� and the W

state jWi � 1
2 �j0001i � j0010i � j0100i � j1000i� both

have (2, 2, 2). The difference can be detected via the
fidelity as follows. It was shown [9] that for any state
j�2i with r13  2 or r14  2, its fidelity to the cluster state
jh�2jC4ij

2 is not greater than 1=2. Hence the observed
fidelity of F > 1=2 assures that the produced state is never
written as a mixture of states with r13  2 or r14  2,
including the GHZ states and the W states. Similarly, any
state with r13  3 or r14  3 has fidelity not greater than
3=4, and hence F > 3=4 assures that the produced state is
never written as a mixture of states with r13  3 or r14 
3, including a four-qubit Dicke state jD4i �

1
��

6
p �j0011i �

j0101i � j0110i � j1001i � j1010i � j1100i� having the
signature (3, 3, 3). The experimentally obtained fidelity,
F � 0:860� 0:015, thus discriminates the produced state
from the classes of entangled states with the Schmidt rank
less than 4 in partition 13 or 14, which include GHZ, W,
and Dicke types of entangled states.

Next, we report the demonstration of basic operations of
one-way quantum computing using the produced four-
photon cluster state. What we try to demonstrate here is
that the entanglement in the produced four-photon state
really contributes to basic operations of one-way QC. In
one-way QC, the entanglement in the cluster state enables
us to obtain the correct output states with the help of the
classical feedforward communication. If it were not for the
quantum entanglement, it would be impossible to achieve
the correct output states for many kinds of gate instructions
with the same amount of classical communication. This
leads to a classical bound on the average fidelity when no
entanglement exists between input qubits (for gate instruc-
tion) and output qubits. In the following, we first explain
the implementation of basic operations in one-way QC.
Then we introduce the classical bounds and show that the
experimental results are beyond the classical bounds.

Two-qubit gates.—We implement the quantum circuit
in Fig. 4 via one-way quantum computing model using
jC4i. This implementation is basically the same as [2,5].
The input state is j ini � j�ij�i. Qubits 2 and 3 are
measured in the basis B��� and B���, where B��� �

fj0i�e
�i�j1i
��

2
p ; j0i�e

�i�j1i
��

2
p g. Here we take fj0i � jHi; j1i � jVig

as a standard basis. The outcomes are feedforwarded
and Pauli operations are applied on qubits 1 and 4 accord-
ingly, resulting in the output state j outi � �RZ��� �
RZ����CZj ini on qubits 1 and 4. Here, RZ��� �
exp��i��Z=2� and CZ operation is defined as jjijki�
��1�jkjjijki, where j, k 2 0, 1. Note that the gate instruc-
tions (�, �) are given to qubits 2 and 3, and only two bits
are communicated to qubits 1 and 4. As in the remote state
preparation (RSP) protocols [16], the entanglement in the
cluster state enables us to obtain the correct output states
with the help of the two-bit communication. If it were not
for the entanglement, achieving the correct output states
for all values of (�, �) would be impossible, leading to a
bound on the average fidelity. In experiment, we chose 8
combinations of (�, �), and measured the fidelity of the
output states (the feedforwarded Pauli operations are sub-
stituted by the appropriate reassignment of measurement
bases for qubits 1 and 4). Table I shows the results. Let us
determine the upper bound on the average fidelity when we
do not have entanglement at all. The only clue about which
of the 8 operations are chosen at qubits 2 and 3 is the two-
bit signal sent to qubits 1 and 4. Hence a possible strategy is
to divide the 8 states into 4 groups, e.g., (i) j 1i, j 2i,
(ii) j 3i, j 4i, (iii) j 5i, j 6i, and (iv) j 7i, j 8i, and to
send the identity of the group. Using this information,
qubits 1 and 4 are prepared in one of the states
(i) j 1i � j 2i, (ii) j 3i � j 4i, (iii) j 5i � j 6i, and
(iv) j 7i � j 8i, which were chosen such that the best
average fidelity is achieved for each group (normalization
factors omitted). This particular strategy gives the average
fidelity of the 8 states cos2��=8� � 0:854. Since the sta-
tistical mixture of strategies does not improve the optimal
fidelity, the possible strategies are exhausted by all the
combinations of the grouping of eight states, which is
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FIG. 4 (color online). Physical implementation and the quan-
tum circuit of a two-qubit gate.

TABLE I. Output state fidelities of two-qubit gates.

� � Output state Fidelity

0 0 j 1i � jHij�i � jVij�i 0:831� 0:033
0 �=2 j 2i � jHijRi � jVijLi 0:847� 0:036
0 � j 3i � jHij�i � jVij�i 0:924� 0:025
0 ��=2 j 4i � jHijLi � jVijRi 0:899� 0:028
� 0 j 5i � jHij�i � jVij�i 0:912� 0:028
� �=2 j 6i � jHijRi � jVijLi 0:913� 0:028
� � j 7i � jHij�i � jVij�i 0:925� 0:024
� ��=2 j 8i � jHijLi � jVijRi 0:910� 0:027
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finite, and we have exhaustively confirmed that the above
number is the optimal one. On the other hand, the average
of the eight fidelities in Table I gives 0:895� 0:010, in-
dicating that our demonstration of the one-way QC
achieved the fidelity that is only possible through the
contribution of the entanglement in the produced cluster
state.

Single-qubit rotations.—The quantum circuit in Fig. 5
shows a simple implementation of a single-qubit rotation.
Qubit 4 is disentangled from the cluster state by measuring
in the basis fj�i; j�ig. The input state is j ini � j�i.
Qubits 1 and 2 are measured in the basis B0��� and B���,
respectively, where B0��� � fj�i�e

�i�j�i
��

2
p ; j�i�e

�i�j�i
��

2
p g. The

outcomes are feedforwarded and Pauli operations are ap-
plied on qubits 3 accordingly, resulting in the output state
j outi � RX���RZ���j�i, where RX��� � exp��i��X=2�.
The gate instructions (�,�) are given to qubits 1 and 2, and
only two bits are communicated to qubit 3. In experiment,
we chose 6 combinations of (�, �), and measured the
fidelity of the output states. Table II shows the results. As
in the case of two-qubit gates, we determine the upper
bound on the average fidelity when we do not have entan-
glement at all. An optimal strategy is to divide the 6 states
into 4 groups, e.g., (i) jHi, (ii) jVi, (iii) j�i, jRi, and
(iv) j�i, jLi, and to send the identity of the group. Using
this information, qubit 3 is prepared in one of the states
(i) jHi, (ii) jVi, (iii) j�i � jRi, or (iv) j�i � jLi (normal-
ization factors omitted). This strategy gives the average
fidelity of the 6 states �2=6� � 1� �4=6� � cos2��=8� �
0:902. On the other hand, average of the six fidelities in
Table II gives 0:926� 0:010, indicating that the entangle-
ment in the produced state really contributes to the one-
way QC.

We have demonstrated a high-fidelity four-photon clus-
ter state that is distinguished from other types of genuine
four-qubit entanglement such as GHZ, W, and Dicke
states. We have also shown that the results of the basic
operations of one-way QC surpass the classical bounds,
which indicates that the entanglement of cluster states
really contributes to one-way QC. The model of one-way

QC is unique in that the computation process is divided
into preparation of a nonlocal static resource (a cluster
state) and dynamic execution involving only local mea-
surements and classical communication. This gives a close
link to the quantum communication problems, and various
classical bounds related to communication tasks such as
the proposed bound here, which may be called ‘‘classical
RSP bound,’’ will be used as benchmarks toward the
realization of quantum computing. The relation between
such bounds and the computational power is also an inter-
esting problem, which may give us a deeper insight into the
role of entanglement in the quantum computation.
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FIG. 5 (color online). Physical implementation and the quan-
tum circuit of a single-qubit rotation.

TABLE II. Output state fidelities of single-qubit rotations.

� � Output state Fidelity

0 0 j�i 0:944� 0:022
� 0 j�i 0:888� 0:029
�=2 0 jRi 0:928� 0:026
��=2 0 jLi 0:969� 0:017
�=2 �=2 jHi 0:915� 0:029
�=2 ��=2 jVi 0:917� 0:027
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