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We demonstrate that virtual excitations of higher radial modes in an atomic Bose gas in a tightly
confining waveguide result in effective three-body collisions that violate integrability in this quasi-one-
dimensional quantum system and give rise to thermalization. The estimated thermalization rates are
consistent with recent experimental results in quasi-1D dynamics of ultracold atoms.
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Thermalization does not occur in integrable systems [1],
since the number of their integrals of motion equals exactly
the number of their degrees of freedom, thus such a system
always ‘‘remembers’’ its initial state in the course of its
dynamical evolution. In an integrable system the finite
spread of initial energy may lead only to relaxation towards
the generalized Gibbs (or fully constrained thermody-
namic) ensemble [2]. Strictly speaking, there is no ther-
malization in any closed system, but for nonintegrable
systems the eigenstate thermalization hypothesis [3] holds,
enabling dephasing to mimic relaxation to the thermal
equilibrium.

The Lieb-Liniger model [4] of spinless bosons with
contact (pointlike) interaction in one-dimension (1D) is a
prime example of such an integrable system.

Ultracold atoms in strongly elongated traps with !r �
!z (!r, !z being the frequencies of the radial and longi-
tudinal confinement, respectively) are an ideal system for
studying 1D physics as long as both the temperature T and
chemical potential � are small compared to the energy
scale given by the transverse confinement:

 �< @!r; kBT < @!r: (1)

Strong inhibition of thermalization was observed in a
beautiful experiment with bosons deep in the 1D regime
[5]. However, recent experimental results for a weakly
interacting Bose gas easily fulfilling the conditions of
Eq. (1) [6–8] are in a good agreement with the thermal-
equilibrium description of the 1D atomic ensembles.

In the present Letter we investigate the breakdown of
integrability and thermalization in ultracold 1D bosons.
The key observation is that a radially confined atomic
gas is never perfectly 1D, and radial motion can be excited,
either in reality or virtually even if Eq. (1) holds. Therefore
we call such systems quasi-1D.

We start from identical bosons in a tight waveguide with
radial frequency !r (!z � 0), interacting via the pseudo-
potential 4�@2m�1�s��r� r0�, where m is the atomic
mass, and �s the s-wave scattering length:
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 Ĥ �r� � �
@

2

2m

�
@2

@x2 �
@2

@y2

�
�
m!2

r

2
�x2 � y2�: (3)

We expand the atomic field operator as follows:

  ̂�r� � L�1=2
X
n;‘;k

âfn;‘gk’n;‘�x; y� exp�ikz�: (4)

Here L is the quantization length and ’n;‘�x; y� is the
normalized eigenfunction of both the radial confinement
Hamiltonian, Ĥ�r�’n;‘�x; y� � �n� 1�@!r’n;‘�x; y� and
the z projection of the orbital momentum, �i�x�@=@y� �
y�@=@x��’n;‘�x; y� � ‘’n;‘�x; y�. The main quantum num-
ber n � 0; 1; 2; . . . , and the orbital-momentum
z-projection quantum number ‘ is restricted by j‘j �
mod�n; 2�;mod�n; 2� � 2; . . . ; n� 2; n and thus has the
same parity as the main quantum number. The atomic
annihilation and creation operators âfn;‘gk and ây

fn;‘gk obey
the standard bosonic commutation rules.

If two colliding atoms are initially in the transverse
ground state of the radial confinement (1D system), then
their orbital-momentum quantum numbers after collision
are restricted to �‘ and �‘.

For two-body collisions to contribute to thermalization,
they have to lead to transverse excitations. The rate �2b of
population of the radially excited modes by pairwise
atomic collisions can be estimated for a nondegenerate
Bose gas, using Fermi’s golden rule. For kBT < @!r this
rate is

 �2b 	 2
���
2
p

@n1D�
2
s�ml

3
r�
�1e��2@!r=kBT�

� 2
���
2
p
!r�e

��2@!r=kBT�; (5)

where n1D is the linear density and lr �
������������������
@=�m!r�

p
is the

size of the transverse ground state. The dimensionless
quantity � � n1D�2

s=lr combines two dimensionless pa-
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rameters (n1D�s /
�
@!r

and �s=lr) which can be seen as

characterizing a 1D system [9].
Equation (5) has a transparent physical interpretation:

�2b is related to the 3D atomic density, which is 
n1D=l
2
r ,

times the s-wave scattering cross section 
�2
s , times the

exponential Boltzmann factor for the fraction of atoms fast
enough to scatter into higher radial modes, times the
corresponding velocity of the collision, 
@=�mlr�.

Calculating the numbers for the data in the 87Rb experi-
ments [7], �s � 5:3 nm, n1D � 50 �m�1, !r=�2�� �
3 kHz, T � 30 nK (� 	 0:007) one obtains a collision
rate of �2b 
 0:02 s�1, at least one order of magnitude
too small for the time scale of the experiment.

If the kinetic energy of the collision is less than 2@!r,
then the radial modes can be excited only virtually and
contribute to the system dynamics only in the second
and higher orders of perturbation theory. If after the col-
lision the radial motion state is jfn01; ‘

0
1g; fn

0
2; ‘
0
2gi �

jf0; 0g; f2p; 0gi, then only one more collision is enough to
quench the virtual excitation and return the system on the
energy shell [Fig. 1, inset (a)]. Such a process yields an
effective three-body collision already in the second order
of perturbation theory.

In contrast processes involving a virtual excitation to
jfn01;�‘g; fn

0
2;�‘gi, ‘ � 0, shown in Fig. 1, inset (b),

contribute only in the third order, and thus will be
neglected.

The small parameter in our perturbation calculation is
n1D�s. To avoid complications related to the confinement-

induced resonance in 1D scattering [10] we assume �s �
lr [9]. We evaluate the matrix element
 

hf0;0g;f2p;0gj��x�x0���y�y0�jf0;0g;f0;0gi��2p�1�l2r��1

(6)

that corresponds to two atoms in the ground state of the
incoming channel, one atom remaining in the same state,
but the other one being excited to a state with zero orbital-
momentum quantum number and even main quantum
number n � 2p, p � 0; 1; 2; . . . (n and ‘ are required to
have the same parity).

The result of Eq. (6) should not be confused with the
matrix element where the outgoing channel is character-
ized by excitation of a higher radial mode of the relative
motion of two atoms as discussed in [11], which equals to
�2�l2r��1. The latter is a linear combination of the matrix
elements corresponding to vertices of both types (a) and (b)
in the inset to Fig. 1 and thus cannot be applied to the
calculation of the second-order process.

Using the matrix element Eq. (6) we can rewrite Eq. (2)
and by adiabatically eliminating the radially excited mode

operators obtain the effective 1D Hamiltonian Ĥ 1D �

Ĥ 0 � Ĥ
�3b�
1D with the three-body interaction

 Ĥ
�3b�
1D � �

2�@!r�
2
s

L2

X
âyk01
âyk02
âyk03
âk1
âk2
âk3

(7)

where the summation in Eq. (7) is taken over all the kinetic
momenta obeying the conservation law k01 � k

0
2 � k

0
3 �

k1 � k2 � k3, âk � âf0;0gk, and � � 4 ln�4=3� 	 1:15.
The relative contribution ��� 1�=� of the virtual states
with the excitation energy higher than 2@!r is remarkably
small. Using Eq. (7) we then obtain the collision rate for
the process shown in Fig. 1, inset (a):

 �3b � C3b@n2
1Dm

�1��s=lr�4 � C3b!r�2; (8)

with C3b � �72�2=
���
3
p
�2� 	 5:57. Comparison to the two-

body rates for typical experiments is given in Fig. 1.
The result of Eq. (8) may seem counterintuitive at first:

the collision rate is independent of temperature, and is
proportional to �2 and the radial confinement !r.

The physics behind the first observation is related to the
fact that the collision kinetic energy is small compared to
the virtual excitation energy [according to assumption
Eq. (1)]. Consequently the composite matrix element of
the second-order process should not depend (in leading
order) on the velocities of colliding particles and hence on
temperature [see Eq. (6)]. In addition the phase-space
volume for the scattered particles is independent on the
incoming momenta k1, k2, and k3.

The rate of three-body elastic scattering must be pro-
portional to the 3D density squared, �n1D=l

2
r�

2. On the other
hand, the scattering rate contains the square of the matrix
element corresponding to the diagram in Fig. 1, inset (a),
where each vertex is proportional to �s, therefore this rate
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FIG. 1. Ratio between the scattering rates for the two routes to
thermalization and breakdown of integrability in 1D systems:
�2b for two-body collisions leading to excited transverse states,
and �3b for the effective three-body collisions. Units on the axes
are dimensionless. � � 0:002 (dashed curve), 0.007 (solid
curve), and 0.02 (dot-dashed curve). The points represent the
predicted ratios for various sets of experimental parameters from
[6] (points), [7] (crosses), and [8] (triangle). Inset: Feynman
diagrams for the effective three-body processes in the second (a)
and third (b) orders of perturbation theory. Solid and dashed lines
correspond to atoms in the ground and excited states of the radial
trapping Hamiltonian, respectively.
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is proportional to �4
s . The factor @=m provides the correct

dimensionality (s�1).
We can now compare the scattering rates for the two

routes for thermalization and breakdown of integrability in
1D systems: thermally excited two-body collisions �2b
[Eq. (5)] or effective three-body collisions �3b [Eq. (8)].
For kBT < @!r we find a simple scaling:

 

�3b

�2b
	

36���
6
p
�2
�2�e2@!r=kBT 	 1:97�e2@!r=kBT: (9)

For large � and small temperatures the scattering rate due
to virtual excitations dominates, and can violate integra-
bility even when thermalization processes due to simple
two-body collisions are frozen out. A detailed comparison
of the two rates and their relation to experimental parame-
ters is given in Fig. 1. The scattering rate due to virtual
excitations of the radial modes can dominate over real
excitations for typical parameters of the recent experiment
[7].

To quantify the thermalization due to the violation of
integrability by the interaction (7), we consider a non-
degenerate, weakly interacting [the Lieb-Liniger parame-
ter [4] � � 2�s=�n1Dl2r� being much less than 1] gas of
bosonic atoms [12] and write out the Boltzmann equation
with a three-body collision integral [13], taking into ac-
count the indistinguishability of the particles:
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p
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To solve Eq. (10) we use the following ansatz for the
perturbed momentum distribution

 fk�t� �
n1D����
�
p

kth
exp��k2=k2

th��1� "4�t�H4�k=kth��; (12)

where kth �
���������������
2mkBT
p

=@ andH4 is the Hermite polynomial
of the 4th order. We choose this form, since it is the
simplest nontrivial perturbation that retains

R
dkkfk � 0.

Linearizing Eq. (10) with respect to the perturbation am-
plitude "4�t� we obtain the exponential solution "4�t� �
"4�0� exp���3b

�4�t� with the decrement

 �3b
�4� � C�4�@n2

1Dm
�1��s=lr�4 � C�4�!r�2; (13)

where the numerical constant C�4� � �64�2=3
���
3
p
�2� 	

1:65. Taking the perturbation proportional to a higher-
order Hermite polynomial Hn leads only to a minor modi-

fication of the numerical prefactor, leaving the functional
dependence on the parameters of the system unchanged
(for example, n � 5 or 6 increases the thermalization rate
by the factor 5=4 or 13=9, respectively). Figure 2 shows
numerical values of �3b

�4� as a function of the 1D density of
87Rb atoms and the radial trapping frequency.

Similarly, we calculate numerically the thermalization
rate �2b

�4� for two-body collisions involving the real transi-
tions between the ground and excited radial states. The
velocity distribution of atoms in the ground and excited
state was perturbed in the same way, as given by Eq. (12),
the Boltzmannian distribution of overall populations be-
tween the levels being kept intact. In the parameter range
of interest we find numerically �2b

�4� 	 �0:33� 0:03��2b,

i.e., �2b
�4� 	 0:93!r� exp�� 2@!r

kBT
�. The ratio of the thermal-

ization rates for the two-body and three-body processes is
very close to the respective ratio of the collision rates,
shown in Fig. 1.

It is interesting to note that we find for both processes,
the two-body collisions to real transverse states and the
effective three-body processes via virtual excited states,
that thermalization in 1D needs about 3 collisions which
are able to distribute energy. This is very close to the 2.7
collisions required for thermalization in 3D [14].

For the typical parameters of an ultracold 87Rb gas on an
atom chip [7] (!r 	 2�
 3 kHz, n1D 	 50 �m�1) we
obtain �3b

�4� 	 2 s�1. This thermalization rate is tem-
perature independent and much larger than the one calcu-
lated from the simple two-body collisions with the energy
sufficient to excite radial modes �2b

�4� 	 3
 10�3 s�1 at
the lowest temperatures measured (30 nK). The estimated
�3b
�4� is consistent with the time needed for evaporative

cooling of a 87Rb gas on an atom chip well below @!r
[6,7].
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FIG. 2. Dependence of the rate �3b
�4� of thermalization induced

by effective three-body collisions on the radial trapping fre-
quency. n1D � 30 �m�1 (dashed curve), 40 �m�1 (solid
curve), and 50 �m�1 (dot-dashed curve).
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The thermalization rate �3b
�4� given by Eq. (13) applies for

a weakly interacting, nondegenerate gas. Precise calcula-
tion of its counterpart �3bG

�4� in a general case (comprising
also the intermediate and strongly interacting regimes as
well as various degrees of degeneracy) is an extended
problem, requiring numerical analysis of many particular
cases and transcending far beyond the scope of the present
Letter. However, taking into account that Eq. (7) can be

written as Ĥ
�3b�
1D � �2�@!r�2

s
R
dz ̂y3

1D�z� ̂
3
1D�z�, where

 ̂1D�z� � L�1=2P
kâk exp�ikz�, we can give a simple esti-

mate of the ratio of these two rates �3bG
�4� =�3b

�4� � %�g3=6�2.
Here % is a phase-space factor accounting for a possible
deviation of the dispersion law of elementary excitation
(from free particle to phonon in strongly correlated or
crossover [15] regimes) and the decrease of the collision
rate per atom in degenerate gases. However, we expect the
influence of this factor be less dramatic than that associated
with the local three-body correlation function g3 �

h ̂y3
1D�z� ̂

3
1D�z�i=n

3
1D. The exact expression for g3 in the

whole range of the atomic repulsion strength (0<�<
1) has been obtained recently [16] for a degenerate 1D
Bose gas. For a nondegenerate weakly interacting Bose gas
g3 � 6. In the zero-temperature limit g3 rapidly decreases
from 1 to 16�6=�15�6� as � grows from 0 to values� 1.

This enables us to interpret qualitatively the experimen-
tal results of Ref. [5], where a degenerate 87Rb gas in a
two-dimensional optical lattice (!r 	 2�
 67 kHz,
n1D 	 10 �m�1) is split by a laser Bragg pulse into two
groups with opposite kinetic momenta, which begin to
oscillate in a weak trapping potential in z direction, collid-
ing each half-period of the oscillation. Using the formula
for g3 from Ref. [16] and estimating %
 3 [17], we find a
thermalization rate under conditions of Ref. [5] to be of
about 0:01 s�1 and 3
 10�4 s�1 for � � 1:4 and 3.2,
respectively, which is consistent with the experimentally
obtained respective lower bounds (2.6 and 25 s) to the
thermalization time. The two-body collision rate decreases
in a general case slower (/��4) than �3bG

�4� . In the case of
[5] two-body collisions are suppressed because the colli-
sion energy is smaller than 0:5@!r.

The elastic three-body processes considered in this
Letter are essential for the possibility of obtaining very
low temperatures in quasi-1D bosonic gases: as the tem-
perature goes below the radial trapping energy, the ‘‘usual’’
two-body processes freeze out quickly, thus preventing
further thermalization. However, the effective three-body
collisions obey completely different scalings (e.g., inde-
pendent of temperature) and allow for thermalization much
deeper in the quasi-1D regime than previously believed,
since thermalization via two-body collision ceases there.
These three-body processes are associated with virtual
excitations of radial modes, which can be dominant for
kBT < @!r. This mechanism is to a certain extent similar

to the processes that allow for the dimer formation in
atomic gases in tight waveguides (‘‘quantum chemistry’’
in 1D) [18]. Our estimations of the relaxation rates are
consistent with recent experimental observations [5–7].
The given scaling laws make the proposed three-body
process accessible to experimental confirmation.
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