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The problem of spin squeezing with a bimodal condensate in the presence of particle losses is solved
analytically by the Monte Carlo wave function method. We find the largest obtainable spin squeezing as a
function of the one-body loss rate, the two-body and three-body rate constants, and the s-wave scattering
length.
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Spin squeezed states, first introduced in [1], generalize
to spin operators the idea of squeezing developed in quan-
tum optics. In atomic systems, effective spins are collective
variables that can be defined in terms of two different
internal states of the atoms [2] or two orthogonal bosonic
modes [3]. States with a large coherence between the two
modes, that is with a large mean value of the spin compo-
nent in the equatorial plane of the Bloch sphere, can still
differ by their spin fluctuations. For an uncorrelated en-
semble of atoms, the quantum noise is evenly distributed
among the spin components orthogonal to the mean spin.
However, quantum correlations can redistribute this noise
and reduce the variance of one spin quadrature with respect
to the uncorrelated case, achieving spin squeezing. Besides
applications in quantum communication and quantum in-
formation [4], these multiparticle entangled states have
practical interest in atom interferometry, and high preci-
sion spectroscopy [5] where they could be used to beat
the standard quantum limit already reached in atomic
clocks [6].

Different techniques to create spin squeezed states in
atomic systems have been proposed and successfully real-
ized experimentally including transfer of squeezing from
light to matter [7] and quantum nondemolition measure-
ments of the atomic state [8]. To go further, it was shown
that coherent interactions between cold atoms in a bimodal
Bose-Einstein condensates [3] can in principle provide a
huge amount of entanglement and spin squeezing. It is thus
important to determine the ultimate limitations imposed by
decoherence to the maximum spin squeezing that can be
obtained by this method. Several forms of decoherence
may be present in the experiment. The case of a dephasing
perturbation was studied in [9]. In this Letter, we deal with
particle losses, an unavoidable source of decoherence in
cold atom systems, due, e.g., to collisions of condensed
atoms with the hot background gas, and to three-body
collisions leading to molecule formation.

As shown in [3], bimodal Bose-Einstein condensates
realize the one-axis twisting model proposed in [1] to
create spin squeezing. This exactly solvable model predicts
a perfect squeezing in the limit of a very large system:
Formally �2 ! 0 for N ! 1, N being the number of

particles in the system and �2 the squeezing parameter
defined in Eq. (8). We expect losses to degrade the squeez-
ing [3] that is �2

no loss � �2
with loss for any value of N.

However, as �2
no loss ! 0 as N ! 1, this inequality does

not tell us what will be the best squeezing in the presence
of losses. In particular, the limit limN!�1�2

with loss could be
zero (perfect squeezing), a very small constant, or a con-
stant close to one (one meaning no squeezing). We show
that the second possibility is the correct one if the trap
frequency is optimized. The best achievable squeezing is
reached for N ! �1, and we derive its explicit expres-
sion, as a function of the scattering length and the loss
constants K1, K2, K3.

We consider two spatially separated symmetric conden-
sates a and b prepared in an initial state with N particles
and a well defined relative phase [10]

 j�i �
1������
N!
p

�
ei�ay � e�i�by���

2
p

�
N
j0i: (1)

We assume that � � 0 initially. Correspondingly, the x
component of the collective spin Sx � �ayb� bya�=2 has
a mean value hSxi � N=2. Here, we assume that no exci-
tation is created during the preparation process, and we
neglect all the other modes than the condensate modes a
and b. When expanded over Fock states jNa;Nbi, the state
(1) shows binomial coefficients which, for large N, are
peaked around the average number of particles in a and
b, �Na � �Nb � N=2. We use this fact to approximate
the Hamiltonian with its quadratic expansion around
�Na and �Nb [11]: H0 �

P
��a;bE� �N�� ����N̂� � �N�� �

1
2�
0
��N̂� � �N��

2 where �� is the chemical potential for
the � condensate and �0� � �@N���� �N�

. In the symmetric
case, we can write

 H0 � f�aya� byb� �
@�
4
�aya� byb�2 (2)

where � � �0a=@. The first term in H0 is some function f
of the total atom number: It commutes with the density
operator � of the system and can be omitted.

In presence of one-, two-, and three-body losses, the
evolution of the density operator, in the interaction picture
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with respect to H0, is ruled by the master equation

 

d~�
dt
�

X3

m�1

X
��a;b

��m�
�
cm� ~�cym� �

1

2
fcym� cm� ; ~�g

�
(3)

where ~� � eiH0t=@�e�iH0t=@, ca � eiH0t=@ae�iH0t=@, and
similarly for b, ��m� � Km

m

R
d3rj��r�j2m, where Km is the

m-body rate constant and ��r� is the condensate wave
function in one of the two modes. In the Monte Carlo
wave function approach [12], we define an effective
Hamiltonian Heff and the jump operators J�m��

 Heff � �
X3

m�1

X
��a;b

i@
2
��m�cym� cm� ; (4)

 J�m�� �
���������
��m�

q
cm� : (5)

We assume that a small fraction of particles will be lost
during the evolution so that we can consider � and ��m�

(m � 2, 3) as constant parameters of the model. The state
evolution in a single quantum trajectory is a sequence of
random quantum jumps at times tj and nonunitary
Hamiltonian evolutions of duration �j:
 

j �t�i � e�iHeff �t�tk�=@J�mk�
�k �tk�e

�iHeff�k=@

� J�mk�1�
�k�1

�tk�1� . . . J�m1�
�1
�t1�e�iHeff�1=@j �0�i: (6)

The expectation value of any observable Ô is obtained by
averaging over all possible stochastic realizations, that is
all kinds, times, and number of quantum jumps, each
trajectory being weighted by its probability [12]

 hÔi �
X
k

Z
0<t1<t2<			tk<t

dt1dt2 	 	 	 dtk
X
f�j;mjg

h �t�jÔj �t�i:

(7)

We want to calculate spin squeezing. In the considered
symmetric case with zero initial relative phase, the mean
spin remains aligned to the x axis hSxi � hbyai, and the
spin squeezing is quantified by the parameter [3,5]

 �2 � min
	

hN̂i�S2
	

hSxi
2 ; (8)

where S	 � �cos	�Sy � �sin	�Sz, Sy � �ayb� bya�=�2i�,
Sz � �aya� byb�=2, and N̂ � aya� byb. The noncorre-
lated limit yields �2 � 1, while �2 < 1 is the mark of an
entangled state [3,4]. In all our analytic treatments, it turns
out that �S2

z � hN̂i=4. This allows to express �2 in a
simple way:

 �2 �
hayai

hbyai2
�hayai � A�

������������������
A2 � B2

p
�; (9)

with

 A �
1

2
Re�hbyayab� bybyaai� (10)

 B � 2 Im�hbybybai�: (11)

With one-body losses only, the problem is exactly solvable.
Following a similar procedure as in [11], we get

 �2�t� �
1� 1

4 �N � 1�e��t
 ~A�
������������������
~A2 � ~B2
p

��
�2 � �
� sin��t� � � cos��t��e��t

�2 � �2

�
2N�2

(12)

with � � ��1� and
 

~A � 1�
�
�2 � 2�
� sin�2�t� � 2� cos�2�t��e��t

�2 � 4�2

�
N�2

~B � 4 sin�t
�
�2 � �
� sin��t� � � cos��t��e��t

�2 � �2

�
N�2

:

The key points are that (i) Heff is proportional to N̂, so it
does not affect the state, and (ii) a phase state j�i is
changed into a phase state with one particle less after a
quantum jump, ca;bj�i / j�� �t=2iwhere t is the time of
the jump, the relative phase between the two modes simply
picking up a random shift ��t=2 which reduces the
squeezing.

When two- and three-body losses are taken into account,
an analytical result can still be obtained by using a constant
loss rate approximation [11]

 Heff ’ �
X3

m�1

X
��a;b

i@
2
��m� �Nm

� � �
i@
2

: (13)

We verified by simulation (see Fig. 1) that this is valid for
the regime we consider, where a small fraction of particles
is lost at the time at which the best squeezing is achieved.
In this approximation, the mean number of particles at time
t is

 hN̂i � N
1�
X
m

��m�t�; ��m� � �N=2�m�1m��m�

(14)

where ��m�t is the fraction of lost particles due to m-body
losses. Spin squeezing is calculated from (9) with

 hbyai �
e�
t

2
cosN�1��t� ~NF1 (15)

 A �
e�
t

8
~N� ~N � 1�
F0 � F2cosN�2�2�t�� (16)

 B �
e�
t

2
cosN�2��t� sin��t� ~N� ~N � 1�F1 (17)

where the operator ~N � �N � @�� acts on the functions

 F���� � exp
�X3

m�1

2��m�te�m
sin�m��t�

�m��t�cosm���t�

�
; (18)

and all expressions should be evaluated in � � ln �Na.
We want to find simple results for the best squeezing and

the best squeezing time in the large N limit. In the absence
of losses [1], the best squeezing and the best squeezing
time in units of 1=� scale as N�2=3. We then set N � "�3
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and rescale the time as �t � �"2. We expand the results
(12) and (15)–(17) for " 1 keeping ��m�=� constant,
and we obtain in both cases

 �2�t� ’
1

N2��t�2
�

1

6
N2��t�4 �

1

3
�sqt; (19)

with

 �sq �
X
m

��m�sq and ��m�sq � m��m�: (20)

For equal loss rates ��m�, the larger m, the more the
squeezing is affected. Introducing the squeezing �2

0�t� in
the no-loss case, the above result can be written as

 �2�t� � �2
0�t�

�
1�

1

3

�sqt

�2
0�t�

�
: (21)

This shows that (i) the fact that only a small fraction of
atoms is lost at the best squeezing time does not imply that
the correction on the squeezing due to losses is small;
(ii) the more squeezed the state is, the more sensitive to
the losses. In presence of losses, the best squeezing time
and the corresponding squeezing are

 tbest �

�
f�C�

2

�
1=3 N�2=3

�
; (22)

 �2�tbest� �

�
1

f�C�2=3
�
f�C�4=3

24
�
Cf�C�1=3

3

��
2

N

�
2=3

(23)

 f�C� �
�����������������
C2 � 12

p
� C; C �

�sq

2�
: (24)

In order to find optimal conditions to produce spin squeez-

ing in presence of losses and set the ultimate limits of this
technique, from now on, we assume that the number of
particles is large enough for the condensates to be in the
Thomas-Fermi regime so that

 � �
1

2
@ �!

�
15

2

Na
a0

�
2=5
; (25)

where a0 �
��������������
@=M �!

p
is the harmonic oscillator length, M

is the mass of a particle, and �! is the geometric mean of the
trap frequencies,

 � �
23=532=5

53=5

�
@

M

�
�1=5

a2=5 �!6=5N�3=5 (26)

 ��1� � K1 (27)

 ��2� �
152=5

27=57

�
@

M

�
�6=5

a�3=5 �!6=5N2=5K2 (28)

 ��3� �
54=5

219=531=572

�
@

M

�
�12=5

a�6=5 �!12=5N4=5K3: (29)

We first analyze the dependence of squeezing on the initial
number of particles, separating for clarity one-, two-, and
three-body losses. Figure 1 shows the best squeezing
�2�tbest� as a function of N when only one kind of losses
is present. The curve without losses is also shown for
comparison. According to Fig. 1, one-body losses do not
change qualitatively the picture without losses and we have
�2�tbest� / N

�4=15 for N ! 1. In the same limit, with two-
body losses, �2�tbest� is independent of N. With three-body
losses, �2�tbest� / N4=15 for N ! 1, implying that, for a
fixed �!, there is a finite optimum number of particles for
squeezing.

We now turn to a full optimization of squeezing over �!
and N in the simultaneous presence of one-, two-, and
three-body losses. To this end, we note that the square
brackets in Eq. (23) is an increasing function of C; we
can then optimize �2�tbest� by minimizing Cwith respect to
�!. Under the conditions K1 � 0 andK3 � 0, the minimum

of C, Cmin is obtained for ��3�sq � ��1�sq , yielding

 �! opt �
219=1275=125=6

151=3

@

M
a1=2

N1=3

�
K1

K3

�
5=12

: (30)

It turns out that Cmin is proportional to N and �2�tbest; �!opt�
is a decreasing function of N. The lower bound for �2,
reached for N � 1, is then

 min
t; �!;N

�2 �

�
5
���
3
p

28
M
@a

�
2=3
� �������������������

7

2
�K1K3�

s
� K2

�
2=3
: (31)

In practice, one can choose N � N� in order to have �2 �

�1� ��min�2 (e.g. � � 10%), and then calculate the
corresponding optimized frequency �!opt with (30). For a
suitable choice of the internal state, in an optical trap, the
two-body losses can be neglected K2 � 0. One can get in
this case very simple formulas for the optimized parame-
ters and squeezing. For � � 10% [13],

10
3

10
4

10
5

10
610

-4

10
-3

10
-2

10
-1

N

ξ2 (t be
st

)

Without losses
One-body losses
Two-body losses
Three-body losses

FIG. 1. Spin squeezing obtained by a minimization of �2 over
time, as a function of the initial number of particles, without loss
of particles (solid line), with one-body losses (dashed line), with
two-body losses (dotted line), with three-body losses (dash-
dotted line), respectively. Parameters: a � 5:32 nm, �! � 2�
200 Hz, K1 � 0:1s�1, K2 � 2� 10�21 m3=s [16], K3 � 18�
10�42 m6=s. The symbols: plus (crosses) are results of a full
numerical simulation with 400 Monte Carlo realizations for two-
body (three-body) losses.
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 N� ’
17:833

�K1K3�
1=2

@a
M
; (32)

 tbest ’ 0:277
�
M
@K1

�
2=3
�
K3

a2

�
1=3
; (33)

 �2 ’ 0:356
�
MK1

@

�
1=3
�
MK3

@a2

�
1=3
: (34)

We now ask whether we can use a Feshbach resonance to
change the scattering length (but also K3) to improve the
squeezing. In Fig. 2, we plot the squeezing parameter vs the
scattering length a. Predicted values of K3, as a function of
a, are taken from [14] for 87Rb in the state jF � 1; mF �
1i andK1 � 0:01 s�1. We calculate �!opt and the number of
particles needed for � � 10% for each point in the curve.
The dip giving large squeezing corresponds to a strong
decrease in K3 around 1003:5 G (K3 ’ 3� 10�45 m6=s).
Close to the Feshbach resonance, the squeezing gets worse
as K3 increases (even if in the figure we do not enter the
regime K3 � @a4=M�.

Finally, we consider the problem of the survival time of a
spin-squeezed state in the presence of one-body losses. We
imagine that the system evolves in two periods: for t < T1,
the system is squeezed in the presence of interactions (� �

0), one- and three-body losses; and for t > T1, the interac-
tion is stopped (� � 0), e.g., by opening the trap, and the
system only experiences one-body losses. As t can be
arbitrarily long, we use the exact solution for t > T1 while
for the t < T1 ’ tbest, we use the approximation (13). Then,
for t � T1 � T2 > T1,
 

�2�t� �
1

4

hN̂�T1�i
2

hSx�T1�i
2 �

�
1

4

hN̂�T1�i
2

hSx�T1�i
2 � �

2�T1�

�
e��

�1�T2

’ 1� 
1� �2�T1��e
���1�T2 : (35)

This result shows that the spin squeezing can be kept some
time after the interactions have been stopped. To give an
example, for 87Rb atoms with bare scattering length a �
5:32 nm, K1 � 0:01 s�1, K2 � 0, K3 � 6� 10�42 m6=s
[15], in optimized conditions (32)–(34) N � 2:8� 105

and �!opt � 2� 20:06 Hz, �2 � 5:7� 10�4 is reached
at T1 � tbest � 4:4� 10�2 s, and a large amount of
squeezing �2 ’ 0:01 is still available after 1 s.

In conclusion, we found the maximum spin squeezing
reachable with cold atoms having a S2

z Hamiltonian, in
presence of decoherence (losses) unavoidably accompany-
ing the elastic interaction among atoms. For an optimized
trap frequency, the best squeezing is reached for an atom
number N ! 1 and not for a finite value of N. This is
important for applications such as spectroscopy where,
apart from the gain due to quantum correlations among
particles (squeezing), one always gains in increasing N.
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FIG. 2. Spin squeezing �2�tbest� optimized with respect to �! as
a function of the scattering length a, when the magnetic field is
varied on the left side of the B0 � 1007:4 G Feshbach resonance
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calculated for � � 10%. We took a�B� � abg
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B0�� with abg � 5:32 nm, �B � 0:21 G. The three-body rate
constant K3�B� is taken from [14], K1 � 0:01 s�1 and K2 � 0.
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