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We developed the foam drainage rheology technique in order to perform rheological measurements of
aqueous foams at a set liquid fraction € and fixed bubble radius R without the usual difficulties associated
with fluid drainage and bubble coarsening. The shear stress exhibits a power-law dependence on strain-
rate, 7 ~ 9" where n = 0.2. The stress exhibits an inverse dependence on liquid content, 7 ~ (1 + h’e) !,
where 2’/ = (O(10) exhibits a diminishing logarithmic trend with y. We propose a model based upon film
shearing as the dominant source of viscous dissipation.

DOI: 10.1103/PhysRevLett.100.208301

Although foams are merely compressed bubbles, they
exhibit a rich variety of mechanical and dynamical behav-
iors [1]. They often serve as model systems for soft or
granular matter [2,3], and are used in a variety of industrial
applications [4]. Understanding of the dissipation mecha-
nisms of sheared foams remains poor [3,5], and conse-
quently all models are semiempirical. It is well known that
shear stresses diminish with increased liquid volume frac-
tions, but to date only one rheological model [6] in-
cludes a liquid volume fraction dependence. The dominant
source of viscous dissipation for shearing is assumed
to be films stretching and contracting. The model predicts
shear thinning, which is a sublinear power-law dependence
of stress on strain rate; however, the exponent is at odds
with recent measurements [3,7]. Additionally, this model
does not account for surfactant chemistry, which has been
shown to affect rheology [8]. On the experimental side,
rheological measurements are challenging because foams
age due to fluid drainage and bubble coarsening [9]. Thus
despite an apparent simplicity in composition, foam me-
chanics continues to present challenges to theorists and
experimentalists alike.

To provide additional insights into dissipation mecha-
nisms occurring during continuous shearing, we have de-
veloped the foam drainage rheology (FDR) technique.
Rather than following conventional batch methods where
a foam is placed into a shear cell and subjected to a battery
of rheological tests, we fix the shear rate and vary the liquid
volume fraction. Thus the dependence on liquid content is
directly measured on the fly, without the tedious prepara-
tion of separate foams for each liquid volume fraction.
Moreover, fluid and bubbles are replenished to create an
ageless foam inside the shear cell with fixed bubble size
and uniform liquid content, whereas in batch processes
the foam immediately starts draining and coarsening
once placed into a shear cell. Our results are at odds with
the film-stretching model, and instead indicate that
film shearing is the dominant dissipation mechanism.

According to the film-stretching model [10,11], the main
source of dissipation is due to films stretching out of and
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contracting into Plateau borders, see Fig. 1(a). The chang-
ing film area leads to a convergent (or dilation) flow in the
transitional region at the edges of Plateau borders, see
Fig. 1(b). Princen and Schwartz [12] calculated the depen-
dence of shear stress 7 on strain rate y for oscillatory shear.
They found 7 o« (T/R)Ca®?, where Ca = uR7y/T is the
capillary number with w, T, and R being the fluid viscosity,
surface tension, and effective bubble radius, respectively.
Subsequently, Princen and Kiss [6] performed experiments
on continuously sheared emulsions, which are geometri-
cally equivalent to foams but age considerably slower.
They developed a semiempirical model that combines
elements of the film-stretching calculation with a yield-
stress term

T= %[Cl(fc — €)Cal/? — (c2In(e) + c3)(1 — &' (1)

where €, is the critical continuous fraction at which rigid-
ity is lost and the fitting parameters are in Table I. However,
Eq. (1) is at odds with rheological measurements by Rodts,
Baudes, and Coussot [7] performed on a shaving cream
foam. Instead they found a simple power-law (Bingham)
behavior with a threshold flow criterion
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FIG. 1

(color online).
sheared foam showing two flow scenarios: stretching or con-
tracting films, and film shearing. The highlighted region of
interest (ROI) is the transition region between a channel and
adjoining film. (b) Film stretching, where flow converges from
the channel into the film. (c) Film shearing, where bubbles slide
past each other on lubricating films of thickness /.

(a) Schematic representation of a
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TABLE I. Parameters of the film-stretching model for emul-
sions [6] and optimized for foams. The last column is the mean-
square error, (x?) = N"'S¥ (m;/p; — 1)?, where m; and p;
are a series of measurements and predictions.

C1 (%] C3 €. <X2>

Emulsion 32 0.11 0.08 0.27 4.8 X 1072
Foam 144 +£21 0.17 = 0.03 0.08 +=.007 0.36 5.2 X 1073

/1. (V/y)" for ¥ =7, 2

with n = 0.25.

The FDR technique creates a foam with controlled
liquid content and steady-state bubble size inside a wide-
gap Couette geometry by liquid perfusion from above and
continuous bubble generation from below. Figure 2(a)
schematically shows the shear cell, where the inner cylin-
der is immersed into the top half of the foam to depth Z =
9.5cm and rotated by a rheometer (AR2000, TA
Instruments) at angular velocity w. Bubbles are continu-
ously and slowly injected into the fluid reservoir at the
bottom, which rise at a rate of 0.1 mm/s, and are popped
at the top by a hot wire loop. A 1% detergent (Dawn®
by Procter & Gamble) dilution in water is chosen for
good foamability, where wu = 0.01 g/cm/s and T =
20 dynes/cm. Pictures show R = 0.05 = 0.02 cm. The
rotating cylinder experiences an average shear stress,
which is the ratio of the measured torque M to the surface
area and radius

(1) = ,[z<Z Tdz/Z = M/<% WD%Z). 3)

Foam drainage is driven by gravity pg and capillarity,
which is a diffusive process that redistributes fluid from
regions of high e to low €. The latter can be expressed as
the gradient of the Laplace pressure, V(8'/2TR'e~1/2),
where 6 = 0.312 is a geometric constant [13]. The mean-
field liquid velocity increases with the bubbles’ cross-
sectional area R? and in the case of mobile interfaces
increases with the square root of the liquid content €'/2.
Thus the drainage velocity is

KR2 1/2 8]/2T
u =o€ (pg + Ve_1/2>. )
M R

Figure 2(b) shows a simulation [14] of the foam’s changing
liquid volume fraction for a two-step incremental perfusion
procedure, based on the node-dominated foam drainage
equation [15,16]

0 SV2KRT
a_: + KRpg - Vel? — =

Initially the foam is drained and has negligible fluid con-
tent, then is perfused at rate g, = 10 ml/ min for 100 sec
which is subsequently increased to ¢; = 30 ml/ min.
Continuous perfusion, also known as forced drainage
[17], results in a traveling front whose speed is that of
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FIG. 2 (color online). (a) Schematic of the FDR apparatus. The
diameters of the inner and outer cylinders are D; = 1.3 and
D, = 3.5 cm, respectively. Foam is generated from the bottom
by blowing N, gas at rate g, = 5 sccm through an extra-coarse
glass frits inside the surfactant fluid reservoir. The foam is
perfused at rate g; by needles located 1 cm from the top.
(b) Simulation of liquid volume fraction profiles for a two-step
incremental perfusion procedure, g; = 10, 30 ml/ min; the
speeds of the traveling fronts are u = 0.30, 0.52 cm/ sec, re-
spectively. The inset shows the perfusion sequence.

the fluid in the uniformly wet plateau region. Thus inside
the traveling wave Ve~ '/2 = 0 in Eq. (4), and the mean-
field fluid velocity results from a force balance of viscous
drag and gravity, which is

1/2

u=uge’?, with wuy=KpgR*/p. (6)

Based upon previous work [15] we use K = 3.7 X 1073,
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FIG. 3 (color online). Evolution of a six-step incremental
perfusion, ¢; = 0.1, 0.3, 1, 3, 10, 30 ml/ min at @ = 1 rad/s.
(a) Mean liquid volume fraction; perfusion rates given at top.
(b) Mean shear stress: thick magenta curve shows measurements,
and three thinner curves are theoretical predictions (see text).
Arrows at bottom show drainage times ¢, for each step.
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We found six-step sequences spanning over two decades
in perfusion rates effective for determining the liquid vol-
ume fraction dependence of the stresses. Figure 3(a) shows
the time evolution of the mean liquid content for the foam
inside the shear gap using foam drainage theory, Eq. (5). In
each perfusion step (e) increases and achieves a higher
plateau value once the drainage front moved below the
inner cylinder, leaving behind a uniformly wet region—
see Fig. 2(b). The thick line in Fig. 3(b) shows the mea-
sured stress, which drops to lower basins for each succes-
sive perfusion. The characteristic time for the stress to
achieve a 90% drop, denoted by ¢, and indicated by arrows,
diminishes with increasing perfusion rates because the
drainage velocity grows with the perfusion rate.

We determine the drainage rates based solely upon the
assumption that shear stresses monotonically decrease with
liquid volume fraction. The stress drops from incremental
perfusions are self-similar and rescaling by the character-
istic times 7, results in their collapse onto a master curve—
see Fig. 4(a). These times provide an estimate for the
drainage speed, which is the distance for the drainage front
to travel through the gap u = Z/t,. They also provide an
estimate for the liquid volume fraction, which is the ratio of
the volume of the perfused fluid to that of the foam inside
the gap € = q;t,/{Zn[(D,/2)> — (D,/2)*]}. The dashed
line of Fig. 4(b) shows the predicted velocity dependence
using Eq. (4), which is in general agreement with the data.
Thus, the u — € drainage estimates, which are obtained
from rheology without a priori knowledge of the constit-
utive relations conform to node-dominated foam drainage
theory, which was determined by optically tracking the
front of the drainage wave [15].

Having confirmed that node-dominated foam drainage
theory is applicable to our experiments, we test the film-
stretching model. The stress is computed from Eq. (1)
using the liquid volume fraction shown in Fig. 3(a). Its
average is determined using Eq. (3) and plotted as a dotted
curve with dashes in Fig. 3(b), which is surprisingly close
to the measurements when considering that constants for
emulsions were used. These differ significantly from
foams: (i) droplets are about 20 times smaller than bubbles,
(i1) surface tension is about 10 times smaller, and (iii) the
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FIG. 4 (color online). (a) Rescaling of the shear stress drops
using the rescaled time Az/t,. The inset gives the dependence of
the estimated drainage velocity Z/t; on liquid content, and the
solid line is the prediction u = 0.9€'/2 cm/s. (b) Relationship of
the estimates for drainage velocity and liquid content.

dispersed phase is significantly more viscous for emulsions
(paraffin oil droplets vs gas bubbles). Additionally, Saint-
Jalmes and Durian [9] determined that the critical liquid
volume fraction at which foam loses rigidity is €, = 0.36
and not 0.27. Thus, we optimize the three parameters of the
film-stretching model, ¢y, c,, ¢3, to provide a better fit for
foams—see the dashed curve in Fig. 3(b). Although the
fitting error has dropped almost tenfold cf. Table I, the
curve still does not agree well with the data. Given that
three free parameters were used in the optimization, the
unsatisfactory agreement of the model with the data casts
doubt on its general validity.

Our findings join previous studies [7,8] that also are at
odds with the film-stretching model. However, we use a
different modeling approach based upon the liquid content
dependence of the stresses afforded by FDR experiments.
We reexamine the film-shearing model [5,18], which is an
older model that has not received much attention because it
yielded neither shear-thinning behavior nor a liquid con-
tent dependence of the stresses. As the name implies, the
dominant dissipation mechanism is a lubrication flow
caused by shearing bubbles inside the films with thickness
h—see Figs. 1(a) and 1(c). It is well known and easily
observed that during drainage liquid flows through the
films which swell with increasing liquid volume fraction
[19,20]. Carrier and Colin [20] showed that films in foams
have a minimal thickness, & ~ 100 nm, which increases
linearly with €. We quantify film-swelling behavior using a
simple first-order approximation % o (1 + h’e). This af-
fords an ansatz for the stress that is the product of the
Laplace pressure, T/R [21], and the shear across films,
which is inversely proportional to film thickness,

=gl +He, (7

where the prefactor g and the film-swelling parameter A’
may have a strain-rate dependence. Although the film
shearing ansatz has one less free parameter than the film-
stretching model, it yields a curve that falls on top of the
measurements; see the black line in Fig. 3(b). The fitting
error is 3 times smaller, {y?) = 0.0017, and the parameters
are g = 0.42 = 0.02 and A’ = 30 = 4.

To arrive at a constitutive relation accounting for both
liquid content and strain rate, we perform several FDR
experiments with various perfusion sequences and differ-
ent angular velocities. For each w, the film shearing pa-
rameters g and A’ are determined by minimizing the {y?)
error. Figure 5(a) is a log-log plot showing power-law
behavior g ~ %2, which is in good agreement with
Rodts’ observations, Eq. (2), for shaving cream [7]. The
film-swelling parameter 4’ exhibits a slow logarithmic
decrease of about 30% over three decades in w; see
Fig. 5(b). We follow previous work and express the dimen-
sionless form of the shear rate at the inner cylinder with the
capillary number. Since the foam flows as a Bingham fluid
and the gap is wide, the strain rate is ¥ = 2w/n. Both the
upper abscissas of Fig. 5 and the fits to the parameters are
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FIG. 5 (color online). Dependence of (a) strain-rate and (b)
film-swelling terms from Eq. (7) on the rate of shear.

given in terms of the capillary number. Based upon the
strain-rate dependence, we modify the ansatz equation (7),
and obtain a constitutive relation

;- T|: Ca" } )

“RLT+ [k, — ky log(Ca)]e
where n=0.2, c=21, k; =10, and k, =2.3.

Preliminary results indicate that the parameters k; and k,
change with bubble size. Thus similar to foam drainage, a
more complete description would likely involve the inter-
facial mobility, which is the ratio of bubble size, bulk, and
surface viscosity uR/u, [8,22,23].

We offer explanations for two trends involving the
strain rate. The decrease of the film-swelling parameter
h' with increasing Ca, which may be due to an increase in
osmotic pressure with strain rates [24]. At greater strain
rates the curvature of the channel walls increases, resulting
in a larger Laplace (under)pressure and causing fluid to be
sucked from the films. Second, shear-thinning is due to
nonlinear processes involved in interfacial flows. Even for
unsheared foams, the interfaces are swirling in a poorly
understood, complex fashion [5,19,20,25]. The macro-
scopic shear results in opposing perturbations of the sur-
face flows on opposite sides of the films, see Figs. 1(a) and
1(c), which leads to a Iubrication flow across the films (i.e.,
film shearing).

In summary, we have developed the FDR procedure for
performing various rheological tests on soap foams at fixed
liquid volume fractions and bubble sizes. Our measure-
ments of the continuous shearing stresses are in poor
agreement with the film-stretching model [6]. We propose
that film shearing is the dominant source of dissipation;
thus, stresses depend inversely on film thickness where the
films swell with increasing liquid volume fraction. We
expect that FDR will prove useful for many different
rheological experiments where controlled liquid content
and bubble size are important, such as small-amplitude
shearing, creep, and step strain. Improvements in measure-

ments will advance rheological models as well as help in
the general understanding of soft condensed matter.
We thank Proctor and Gamble for their support.
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