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We introduce an equation for protein native topology based on recent analysis of data from the Protein
Data Bank and on a generalization of the Landau-Peierls instability criterion for fractals. The equation
relates the protein fractal dimension df, the spectral dimension ds, and the number of amino acids N.
Deviations from the equation may render a protein unfolded. The fractal nature of proteins is shown to
bridge their seemingly conflicting properties of stability and flexibility. Over 500 proteins have been
analyzed (df, ds, and N) and found to obey this equation of state.
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Two seemingly conflicting properties of native proteins,
such as enzymes and antibodies, are known to coexist.
While proteins need to keep their specific native fold
structure thermally stable, the native fold displays the
ability to perform flexible motions that allow proper func-
tion [1–4]. This conflict cannot be bridged by compact
objects which are characterized by small amplitude vibra-
tions and by a Debye density of low frequency modes.
Recently, however, it became clear that proteins can be
described as fractals: namely, geometrical objects that
possess self-similarity [5–9]. Adopting the fractal point
of view to proteins makes it possible to describe within the
same framework essential information regarding topology
and dynamics [10,11] using three parameters: the number
of amino acids along the protein backbone N, the spectral
dimension ds, and the fractal dimension df.

Based on a generalization [12] of the Landau-Peierls
instability criterion [13], we derive a relation between the
spectral dimension ds, the fractal dimension df, and the
number of amino acids along the protein backbone:

 

2

ds
�

1

df
� 1�

b
ln�N�

: (1)

The spectral dimension ds governs the density of low
frequency normal modes of a fractal or protein. More
precisely, denoting the density of modes g�!�, the scaling
relation g�!� �!ds�1 holds for low frequencies.
Describing the mass fractal dimension df is most conve-
nient using a three-dimensional example. Draw a sphere of
radius r enclosing some lattice points in space and calcu-
late their massM�r�, increase r and calculate again. Do this
several times and if M�r� scales as rdf the exponent df is
called the fractal dimension. For a regular 3D lattice both
ds and df coincide with the usual dimension of 3. For
proteins, however, it is usually found that ds < 2 and 2<
df < 3, leading to an excess of low frequency modes and a
more sparse fill of space [5,6,9,14,15]. The parameter b

weakly depends on temperature and interaction parameters
as discussed later.

Equation (1) is obeyed by a large class of proteins
regardless of their source or function. It should be noted
that every protein in our set, bearing an entirely different
sequence, is in fact a different physical system. Thus
Eq. (1) describes the universal common behavior of these
different systems, as opposed to the case of a single under-
lying system, e.g., a Gaussian or swollen polymer chain,
studied at many different sizes. We suggest that deviations
from this ‘‘equation of state’’ for protein topology may
render a protein unfolded. The fractal character implies
large amplitude vibrations of the protein that could have
led to unfolding. By selecting a thermodynamic state that is
‘‘close’’ to the edge of stability against unfolding, nature
has solved the thermostability conflict. Nature’s solution
might be incorporated when planning biologically inspired
catalysts.

We are led to relation (1) from two different independent
pathways. The first approach utilizes the Gaussian network
model (GNM) [16]. The melting of a protein is treated in
this approach in a way similar to the melting of a solid
crystal [17], with an additional assumption: surface resi-
dues initiate the melting process in proteins. Another ap-
proach that leads to relation (1) is motivated by the
viewpoint of a folded protein as a collapsed polymer. It
introduces a non-Lindemann criterion and a bond-bending
Hamiltonian rather than the GNM Hamiltonian used in the
first approach.

The GNM considers proteins to be elastic networks
whose nodes correspond to the positions of the � carbons
in the native structure, and the interactions among nodes
are modeled as homogeneous harmonic springs. An inter-
action between two nodes exists only if the nodes are
separated by a distance less than Rc, a distance known as
the interaction cutoff. The cutoff distance is usually taken
in the range 6–7 Å, based on the radius of the first coor-
dination shell around residues observed in the Protein Data
Bank (PDB) structures [18,19]. The GNM is defined by the
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harmonic potential energy:

 VGNM �
�
2

X

i;j

�ij��~ri � �~rj�
2: (2)

Here � is the springs force constant and is assumed to be
homogeneous and �~ri is the displacement with respect to
the equilibrium position ~R0

i of the ith C� atom. �ij is the
network connectivity matrix with the following entries:
�ij � 1 if i � j and the distance j ~R0

i � ~R0
j j between two

C� atoms in the native conformation is smaller than Rc,
�ij � 0 otherwise. The spectrum of the elastic network is
given by the set of eigenvalues f!2

0; !
2
1; . . . ; !2

N�1g of the
Kirchhoff matrix, �ij � ��ij � �ij

P
k�i�ik. The only in-

formation required to implement the method is the knowl-
edge of the native structure. GNM has been widely applied
because it yields results in agreement with x-ray spectros-
copy and NMR experiments [16,20].

In order to test the validity of Eq. (1), we calculated the
spectral and fractal dimensions for a data set of 543 pro-
teins; see Fig. 1. Calculations were preformed on known
protein structures, all structures were downloaded from the
PDB [21]. The proteins that were chosen may differ in
function and/or source organism and represent a wide
length scale ranging from 100 to 3000 residues.
Statistical analysis of the data gathered reveals satisfying
agreement with Eq. (1). Fitting our data with Eq. (1) yields
the following best-fit parameters: b � 2:80 for the cutoff
Rc � 7 �A and b � 3:97 for a slightly different cutoff Rc �
6 �A. Despite the diversity in the sample data both cases
yield significant correlation coefficients: 0.64 for Rc �
7 �A and 0.55 for Rc � 6 �A. In what follows we use the
latter cutoff. Testing the validity of our predictions further,
we tried fitting the data with the equation 2

ds
� 1

df
� a�

b
ln�N� , which is a modification of Eq. (1) with the unity
replaced by a parameter ‘‘a’’ on the right-hand side. The
results are shown in Fig. 2. Allowing a free constant fitting
parameter enabled us to confront theory with practice since
our prediction is a � 1. A similar relation between N and
ds was suggested and tested on a small set of proteins in
[6]. In that study a peculiar offset in the observed value of a
constant fitting parameter, predicted to be exactly unity,
was reported. We believe to have explained the reason for
this offset and by doing so we were led to Eq. (1). The
results shown in Fig. 2 indicate that the value of the
parameter ‘‘a’’ is indeed close to 1. We also checked the
validity of Eq. (1) for proteins all originating from the same
creature. We thus ‘‘sliced’’ the data according to various
sources (human, E. coli, etc., . . .) in order to gain further
insight into the relation between the source organism and
the fitting parameters. The results of this analysis are
summarized in Table I. Of special interest are proteins

FIG. 1 (color online). Calculating the spectral dimension ds
for PDB codes: 1V97 (N � 2594, ds � 1:78), 1E7U (N � 872,
ds � 1:56), and 1VPD (N � 279, ds � 1:49). For each protein,
we found the set of vibrational eigenfrequencies f!0; !1; . . . ;
!N�1g that characterize the elastic network it forms when
modeled by the GNM and plotted ln�G�!�� vs ln�!�. In this
example Rc � 6 �A and G�!� is the cumulative density of modes
defined as G�!� �

R
!
0 g�!

0�d!0. All obtained modes are shown.
The low frequency regions of G�!� clearly exhibit a power law
behavior; i.e., the scaling relation G�!� �!ds holds for low
frequencies. Dashed lines indicate best fits to these regions, ! 2
�0:109; 1:67�, ! 2 �0:119; 1:6�, and ! 2 �0:243; 0:888� for
1V97, 1E7U, and 1VPD, correspondingly; the slopes correspond
to the spectral dimensions. Inset: Calculating the mass fractal
dimension df for PDB code 1V97 (N � 2594, df � 2:64), df
was taken to be the average mass fractal dimension obtained by
choosing the origin to be each and every one of the ten C-�
atoms closest to the protein’s center of mass. For a given origin,
df was estimated via a power law fitting to M�r�, dashed lines
indicate best fits. The data points as well as the best fits for
different origins overlap significantly; we take the average slope
to be the fractal dimension.

FIG. 2 (color online). Fitting the data gathered for 543 proteins
with the equation 2

ds
� 1

df
� a� b

ln�N� . Here, the spectral dimen-

sion was calculated for Rc � 6 �A. The best-fit parameters are
a � 0:90 and b � 4:53, the correlation coefficient is 0.55.
Prediction bounds are for a confidence level of 95%.
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originating in hyperthermophiles [22]. Surprisingly, such
proteins that were included in the analyzed data, Fig. 2 and
Table I, appear to fulfill Eq. (1).

We now describe the physics behind Eq. (1) and the
alternative routes leading to it. In a paper generalizing the
Landau-Peierls instability, Burioni et al. [12] showed that
for ds < 2 the mean square displacement (MSD) h�r2i of a
structural unit (in the GNM, a single amino acid) in a
system composed of N elements diverges in the limit
N ! 1 as

 h�r2i /
kBT
�
N�2=ds��1: (3)

It is clear that with ds < 2, h�r2i grows indefinitely withN.
Letting p be the ratio between the number of surface
residues and the total number of residues in a protein and
q � 1� p we write h�r2itotal � ph�r2isurface � qh�r2ibulk.
For this equation to hold for every N, both terms on the
right-hand side must scale as the left-hand side, i.e., as in
Eq. (3). Since by definition p is directly proportional to the
surface to volume ratio of a protein, we obtain

 p /
S
V
/

1

Rg
/

1

N1=df
; (4)

where Rg is the gyration radius of the protein [5,23]. At
very low temperatures the MSDs of surface residues and of
bulk residues are of the same order of magnitude. As
temperature increases, the MSD values grow, and since
surface residues are those prone to interactions with the
solvent, it is reasonable to assume that melting starts when
MSD values of surface residues reach a certain threshold.
Denoting this threshold h�r2

meltingisurface, letting Tm repre-
sent the melting temperature and utilizing the scaling law

of ph�r2isurface, we obtain the following approximation:

 

kBTm
�

N�2=ds���1=df��1 / h�r2
meltingisurface: (5)

Rearrangement leads to Eq. (1), where the constant b
depends on the parameters h�r2

meltingisurface, �, and Tm.
This dependence, however, is logarithmic and thus very
weak, allowing a comparison among different proteins
without computation of the specific parameters.

A different route to Eq. (1) is to start with a tensorial
elasticity model rather than the scalar elasticity (Born)
model described by the GNM. Here we use the bond-
bending potential, previously studied for percolation
[24,25]:

 V �
�
2

X

ij

�ij���~ri � �~rj� 	 r̂ij�2 �
B
2

X

jik

�ij�ik���jik�2;

(6)

where ��jik is the angle between bonds hiji and hiki, and
r̂ij is the unit vector along the bond hiji. We note that the
first term is essentially the anisotropic network model
discussed by Atilgan and co-workers [26] and describes
the stretch-compress penalty, and the second term de-
scribes bond-bending penalty. When the bond-bending
potentials are effectively softer than stretch-compress po-
tentials (B
 �R2

g), a very likely situation in proteins, the
density of low frequency modes is dominated by bond-
bending behavior and g�!� �!dE�1, where dE is the
bond-bending spectral dimension equivalent to the spectral
dimension ds. For percolation clusters dE < 1, and this is
expected also for other fractals.

TABLE I. Fitting the data from various creatures with the equation 2
ds
� 1

df
� a� b

ln�N� . Here,
the spectral dimension was calculated for Rc � 6 �A, and c.c is the correlation coefficient. It is
apparent from the table that when allowing a constant fitting parameter its value remains close to
1; this is true for both the set as a whole and for the overwhelming majority of creatures we
analyzed.

Source Proteins a b c.c.

All 543 0:9� 0:09 4:53� 0:57 0.55
Mesophiles 432 0:91� 0:1 4:45� 0:61 0.57
E. coli 40 1:05� 0:25 3:66� 1:53 0.62
Bacillus subtilis 40 0:66� 0:42 6:01� 2:49 0.62
Bos taurus (cattle) 36 1� 0:30 3:71� 1:79 0.59
Homo sapiens (human) 44 1:13� 0:43 3:21� 2:54 0.36
Mus musculus (mouse) 37 1:18� 0:40 3:11� 2:26 0.43
Rattus norvegicus (rat) 36 0:86� 0:47 5:12� 2:71 0.55
Saccharomyces cerevisiae (yeast) 38 0:81� 0:47 5:05� 3:08 0.55
Salmonella typhimurium 28 0:59� 0:50 6:45� 3:08 0.64
Hyperthermophiles 111 0:87� 0:25 4:8� 1:52 0.51
Pyrococcus 44 0:99� 0:42 3:9� 2:57 0.42
T. maritima 49 0:95� 0:46 4:46� 2:70 0.44
A. aeolicus 20 0:73� 0:40 5:84� 2:36 0.77
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Next consider the variance of fluctuations in the distance
between two tagged points on the protein that are distanced
Rg apart. This may be evaluated in a similar way to the one
described in [10,27], as h ~x2�Rg�i � N�2=dE��1. Importantly,
if dE < 1 and df > 2, this diverges with increasingN faster
than R2

g � N2=df . We postulate that melting occurs when
the magnitude of these fluctuations reaches the protein
size, namely, when h ~x2�Rg�i � R2

g. This leads to

 

2

dE
� 1�

2

df
�

const

ln�N�
; (7)

an equation that resembles Eq. (1) with ds replaced by dE.
In order to find dE one has to solve for the eigenfrequen-

cies of the bond-bending Hamiltonian. To circumvent this
difficulty, we use relations that have been derived for
percolation clusters, assuming that they hold for other
fractals and therefore at least approximately for protein
networks [24,25]. The spectral and bond-bending spec-
tral dimensions have been shown to obey the relations
[24,25,28] ds �

2df
2�d�df�t=�

and dE �
2df

df�2�1=� , where t

is the percolation conductivity exponent �� �p� pc�t

and � is the percolation correlation length exponent ��
�p� pc���. From these two relations we find, for d � 3,

 

2

dE
� 1�

2

df
/

2

ds
� 1�

1

df
: (8)

Using Eqs. (7) and (8) leads again to Eq. (1). The relation
2
ds
� 1

df
� 1� b

ln�N� and the general inequalities 1 � ds �

df � 3 lead to the following effective bounds on ds and df:
1 � ds �

3
1�b= lnN � df � 3. Interestingly, the latter

bounds permit values of ds greater than 2. This does not
pose any conflict since the Landau-Peierls instability is
controlled in this bond-bending model by dE rather than ds.

One may wonder what will happen if a protein is forced
to strongly deviate from Eq. (1) and how artificial defor-
mations of the protein fold may lead to a breakdown of
criterion (1). Strong deformations of the protein fold may
actually happen in vivo as part of a natural process. A
possible example is GroEL, a protein chaperon that is
required for the proper folding of many proteins. Recent
molecular dynamics simulations demonstrate the unfold-
ing action of GroEL on a protein substrate [29,30]. Our
work provides a theoretical framework that may help
understand GroEL induced unfolding. In addition our
work opens new possibilities for nanoscale and biologi-
cally inspired engineering of catalysts, emphasizing the
importance of internal motion.
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