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We study the ac Josephson effect in a superconductor-ferromagnet heterostructure with a variable
magnetic configuration. The system supports triplet proximity correlations whose dynamics is coupled to
the magnetic dynamics. This feedback dramatically modifies the behavior of the junction. The current-
phase relation becomes double periodic at both very low and high Josephson frequencies !J. At
intermediate frequencies, the periodicity in !Jt may be lost.
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Spin-dependent transport through hybrid structures
combining ferromagnets (F) and normal metals has re-
cently attracted a lot of interest, motivated by the prospect
of potential technological applications in the field of spin-
tronics [1]. Particular attention is given to two complemen-
tary effects involving mutual influence between electric
current and magnetic configuration. The first is giant mag-
netoresistance [2] in which the conductance is much larger
when different magnetic regions have their magnetic mo-
ments aligned than when they are antialigned. The opposite
effect is the appearance of torques acting on magnetic
moments when an electric current flows through the system
[3]. These nonequilibrium current-induced torques appear
due to nonconservation of spin currents accompanying a
flow of charge through ferromagnetic regions. They allow
manipulation of the magnetic configuration, including
switching between the opposite directions or steady-state
precession, without application of magnetic fields [4]. The
two effects combined promise important practical applica-
tions in nonvolatile memory, programmable logic, and
microwave oscillators.

A conceptually different situation occurs when a ferro-
magnet is coupled to a superconductor (S), since the spin
current through the superconducting part vanishes [5]. This
additional constraint modifies the nonequilibrium torques,
opening the possibility of perpendicular alignment of mag-
netic moments. Furthermore, if a magnetic structure is
contacted by two superconductors, the proximity effect
may be present, leading to a finite Josephson current
through the structure at equilibrium. The torques generated
by this current correspond to an equilibrium effective
exchange interaction between the magnetic moments
which can be controlled by the phase difference between
the superconductors [6]. The same mechanism enables the
reciprocal effect in which the supercurrent depends on the
magnetic configuration.

For a uniform ferromagnet, the observation of these
effects requires a very thin magnetic layer, since the prox-
imity effect is suppressed at short distances. However, in
nonuniform ferromagnets, a long-range proximity effect

can exist due to triplet superconducting correlations [7].
This triplet proximity effect (TPE) strongly enhances the
associated Josephson current. It is important that TPE
essentially depends on the magnetic configuration of the
system [7]. Hence S/F multilayers exhibiting TPE are
especially suitable for studying the Josephson-induced
magnetic exchange interaction. By varying the relative
magnetization directions of different magnetic regions,
one can control the supercurrent flowing through the struc-
ture. Then, if the magnetic configuration is allowed to
respond to the Josephson-current induced torques, it cre-
ates feedback for the supercurrent and considerably modi-
fies it.

In this Letter, we consider the magnetic exchange inter-
action induced by Josephson currents in a dirty S/F hetero-
structure exhibiting TPE. We show that this interaction
favors noncollinear magnetic configurations, and the pre-
ferred direction depends continuously on the supercon-
ducting phase difference �. Thus, the static magnetic
configuration can be controlled by the applied phase dif-
ference. We then consider the influence of feedback from
the magnetic moments on the ac Josephson effect. We
demonstrate that the magnetic system exhibits a range of
different behaviors, from simple harmonic oscillations to
fractional-frequency periodic behavior and chaotic motion.
The magnetic feedback complicates the behavior of the
current in the time domain, making it generally impossible
to express it in terms of a current-phase relation. This is in
contrast with the ac Josephson effect without the magnetic
feedback, where the time dependence of the supercurrent J
is determined by the current-phase relation (J � Jc sin�
for TPE in diffusive systems, with the exception of the
magnetic configuration with mutually perpendicular direc-
tions where a transition between ‘‘0’’ and ‘‘�’’ states
occurs [8]).

On the other hand, we find that both in the low- and high-
frequency limit the current-phase relation becomes mean-
ingful, with the current exhibiting a double-phase depen-
dence, J / sin2��t� [9] or J / cos2��t�. The critical
current in the low-frequency regime is of the order of the
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value ETh=eRn, characteristic for diffusive systems, ETh

and Rn being Thouless energy and normal-state resistance
of the junction, respectively. The unusual cosine depen-
dence of the Josephson current appears when Gilbert
damping is important in the magnetic dynamics, breaking
the time-reversal symmetry. At high frequencies !J, the
magnetization cannot effectively follow the phase varia-
tion, leading to a 1=!2

J suppression of the effective
Josephson coupling. At even higher frequencies, the damp-
ing is dominant, and the frequency dependence becomes
1=!J. The presence of damping is expressed in the appear-
ance of a dc component of the current leading to a finite
resistance.

The system.—We consider the minimum discrete setup
exhibiting TPE (Fig. 1). Two magnetic regions, 1 and 3, are
adjacent to the superconducting reservoirs that induce
proximity mini-gaps �1;3 in them. Between these regions
there is an additional single-domain magnetic region, 2,
whose length is much larger than the coherence length �h
(and shorter than the coherence length in the absence of
exchange field �N), where triplet superconducting correla-
tions are induced. This region is assumed to be weakly
polarized (metallic), so that both spin directions are present
at the Fermi surface. The magnetic regions are character-
ized by the exchange energies hi, while the magnetization
directions ni are specified by the angles �1, �3, and �
(Fig. 1). Assuming that the conductances of these regions
are much higher than those gn1;3 of the connectors between
them, our system can be described by a circuit-theory
model for TPE [8].

Let us now discuss the minimum requirements for the
magnetic feedback. If all three directions of the magneti-
zation n1–3 can freely rotate, they always prefer to be
aligned, thus suppressing the TPE. The same situation
occurs if any two of these vectors are free. In order to
induce TPE, we thus need to fix the directions of two of the
vectors. If only the middle vector n2 is allowed to rotate, it
will assume its equilibrium position along one of the two
bisectors between the fixed directions n1 and n3. On the

other hand, if the magnetic vector of one of the outer
regions is allowed to rotate, an interesting situation arises
when its equilibrium direction continuously depends on the
superconducting phase difference across the junction. In
order to explore this situation, we assume that n1 and n2

are fixed, e.g., by pinning to an antiferromagnetic sub-
strate, or by geometrical shaping, with the angle between
them being �1. Magnetization n3 is free to rotate, with
region 3 separated by a normal spacer from region 2 in
order to avoid exchange coupling between them.

In accordance with the model assumptions, regions 1
and 3 act as effective S/F reservoirs; hence, their energies
are independent of the magnetic configuration. On the
other hand, triplet superconducting correlations extending
through region 2 are very sensitive to the magnetization
directions. The configuration-dependent part of the energy
can be found by integrating over the density of states
(DOS) in region 2. The DOS for each spin direction is
given by [8]
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. The energy is given by a logarith-
mic integral, and the main contribution comes from ��
ETh. In the leading order one obtains
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where v2 is the volume of the magnetic region 2 and �cut ’
min��i; hi ��i� is a cutoff energy. This expression can be
written in a form presenting explicitly the dependence on
the orientation angles �3 and �,

 E � p2
3sin2�3 � 2p1p3 sin�3 cos� cos�; (3)

with p1;3 being effective exchange couplings for the mag-
netic vector n3. The stable configuration is achieved when
all magnetization directions are in the same (xz) plane, and
n3 is tilted with respect to n2,

 sin�3 � �p1=p3�j cos�j: (4)

This angle depends continuously on the applied supercon-
ducting phase difference �, while the angle � assumes the
values 0 or � so that the product cos� cos� is negative. In
fact, there are two stable directions, given by the angles �3

and �� �3. In what follows we treat them as equivalent,
since they correspond to the same current. The energy of
the stable configuration is given by Emin � �p

2
1cos2�.

Hence, allowing the magnetization direction n3 to orient
itself along the stable direction leads to the current-phase
relation J � Jc sin2�.
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FIG. 1. The experimental setup.
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Low frequencies.—When a small voltage V is applied to
the structure, such that the corresponding Josephson fre-
quency !J � 2eV=@ is much smaller than the character-
istic frequency of the magnetic system!m (see below), the
vector n3 follows the stable direction given by Eq. (4),
performing slow oscillations in the x-z plane. The alter-
nating Josephson current oscillates with the double fre-
quency

 J �
2e
@
p2

1 sin
4eV
@
t; (5)

while the critical current remains of the same order of
magnitude as in the case with a fixed magnetic
configuration.

For higher Josephson frequencies, the variation of n3 is
no more limited to the x-z plane. Instead, the magnetiza-
tion performs a variety of nonharmonic motions whose
frequency may be a multiple or a fraction of the driving
frequency !J [Figs. 2(a), 2(c), and 2(d)]. For certain
trajectories the time average of �3 is finite [Fig. 2(c)],
corresponding to a tilt of n3 away from the equilibrium
in response to an applied voltage. Within some frequency
intervals, the motion is chaotic, as shown in Fig. 2(b). In
these intermediate regimes, the Josephson current shows a
complicated time dependence which is generally not peri-
odic in 2�=!J. Hence this dependence cannot be parame-
trized in terms of the phase. Instead, one can speak of a
Josephson current with a time-dependent coupling.

High frequencies.—If the Josephson frequency is much
higher than the magnetic frequencies, the vector n3 cannot
effectively follow the fast oscillations of the potential, and
the time-averaged potential seen by n3 has a minimum for

n3 k z. The motion of n3 can be determined by expanding
n3 � z� �n and using a linearized Landau-Lifshits-
Gilbert (LLG) equation,

 � _n � z��	�Heff � 
�n�; (6)

where 	 is the gyromagnetic ratio, 
 is the damping
coefficient, Heff � �@E=@m3 is the effective field, and
m3 is the magnetization density of region 3.

When Gilbert damping is negligible, the trajectory of n3

has a very low aspect ratio, so that the motion is almost
completely confined to the y axis. It is given by

 �nx �
	2p1p

3
3@

2

e2V2m2
3

cos
2eVt
@

; �ny �
	p1p3@

eVm3
sin

2eVt
@

:

Thus at high frequencies, n3 precesses in phase with the
voltage pumping. This leads to an increase in the
Josephson energy, and, correspondingly, a negative
Josephson current,

 J � �
2@

e

�
	p1p

2
3

Vm3

�
2

sin
4eVt
@

: (7)

Hence in the high-frequency regime the system shows not
only frequency doubling, but also an effective � junction
behavior. The magnitude of the current is suppressed as
	V�2 as shown in Fig. 3.

The neglect of damping is justified as long as 
!J 

!m � 	p2

3=m3. When the voltage is high enough, this
condition is not satisfied anymore, and the dissipation
starts to be important. In the opposite case 
!J � !m,
the motion of n3 is determined by the driving against the
damping force,
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FIG. 2 (color online). Trajectories of the magnetization vector
in the x-y plane for different Josephson frequencies (given in
units of !m). Trajectory (b) is chaotic, while trajectory (c) has a
finite zero-frequency component for nx. Here T is the period of
the trajectory, and T0 � 2�=!J. For comparison, the low-
frequency trajectory lies entirely on the x axis.
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FIG. 3 (color online). The absolute value of the Josephson-
current harmonics proportional to sin2!Jt (asterisks) and to 1�
cos2!Jt (dots). Solid lines are fits 1=!J and !�2

J . The data
points are obtained from numerical integration of the full (non-
linear) LLG equation.
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Then the Josephson current is given by

 J �
2
	p2

1p
2
3

m3V

�
1� cos

4eVt
@

�
: (9)

Note the unusual cosine dependence on the phase. It occurs
since the time-reversal symmetry is broken by the dissipa-
tion in this regime. Due to the same reason, a zero-
frequency component of the current appears, signifying
the onset of a finite nonlinear resistance across the struc-
ture. Since this regime is governed by the damping, the
current amplitude is proportional to 
, while the suppres-
sion 	1=V is weaker in this regime (Fig. 3).

To estimate the magnetic dynamics frequency !m, we
use typical values ETh 	 1 meV, �0 	 1=�eV=atom�, and
m3 	 1�B=atom, where �B is the Bohr magneton. Then
!m 	 v2=v3 GHz, where v2;3 are the volumes of the cor-
responding magnetic regions. As this frequency is quite
low, observation of the high-frequency regimes should
present no difficulty. On the other hand, the low-frequency
ac regime would require extremely low voltages, below
1 �V. A reasonable alternative would be incorporating the
structure in a superconducting loop and measuring the
Josephson current as a function of the applied flux.

Applicability of our model requires that any magnetic
anisotropy of part 3 should be smaller than the proximity-
induced energy, Eq. (2). With the above values of the
parameters it is of the order of 104 � v2 J=m3; thus, one
should choose materials with a low value of the crystalline
anisotropy, such as permalloy. Generally, the observation
of the effect would be easier in materials with the low
exchange field. Finally, we emphasize that the properties
discussed above are specific for metallic systems. In half-
metals, the behavior will be very different. Thus, in the
low-frequency regime n3 precesses around n2 at a constant
angle �3, while the Josephson current vanishes.

Conclusions.—We have considered the ac Josephson
effect in a SFS structure with magnetic dynamics coupled
to the dynamics of superconducting correlations. The mag-
netic configuration in the structure was assumed to be
nonuniform so that the structure exhibits TPE. Variation
of the magnetic configuration is shown to essentially mod-
ify the current behavior that can be observed in the appear-
ance of fractional Shapiro steps. Thus measurement of the
Josephson current would provide information about the
coupling and self-consistent feedback dynamics between
the superconducting and magnetic degrees of freedom. The
coupling also allows control of the magnetization direction
by means of applied voltage or superconducting phase. In
the low-frequency limit, the magnetization follows the
immediate potential minimum, leading to a sin2�
current-phase relation. The critical current has the same
order of magnitude ETh=eRn as the one due to the usual

singlet proximity effect in dirty structures. In the high-
frequency regime, as long as the damping is not important,
the Josephson current is negative, corresponding to a
�-junction behavior. It is suppressed by a factor
�!m=!J�

2 relative to the low-frequency regime. At even
higher frequencies, Gilbert damping starts playing the
major role in the dynamics. Then the time-reversal sym-
metry is broken and the current-phase relation takes an
unusual cosine form. In addition, a dc component of the
current appears, manifesting itself in a finite resistance.
The current suppression becomes weaker in this regime.
The even current-phase relation has been recently pre-
dicted in Ref. [13] for a system with spin-active interfaces.
Note, however, that in our case for high frequencies the
current-phase relation is not meaningful, and the even time
dependence appears due to the damping.
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