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There are contradictory published data on the behavior of fluid slip at high shear rates. Using three
methodologies (molecular dynamics simulations, an analytical theory of slip, and a Navier-Stokes-based
calculation) covering a range of fluids (bead-spring liquids, polymer solutions, and ideal gas flows) we
show that as shear rate increases, the amount of slip, as measured by the slip length, asymptotes to a
constant value. The results clarify the molecular mechanics of how slip occurs. Furthermore, they indicate
that in this limit, molecular dynamics simulations must accurately account for heat transfer to the solid.
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Recent experimental, numerical and analytical results
show that the fluid adjacent to a solid will have a nonzero
net speed relative to the solid [1,2]. Although this slip was
speculated from the earliest days of fluid mechanics, its
small magnitude made it difficult to substantiate (see the
references in [3]). Over the past decade, slip has been
amply demonstrated as computational and experimental
techniques have improved [4,5]. For nanoscale flows, slip
is potentially of technological utility. Small size leads to
large flow resistance and hence large energy costs for
pumping liquids through nanochannels in processes such
as desalination and other chemical purification techniques.
However, if the liquid can be made to slip, then the
resistance and the energy requirements can be reduced,
with the promise that these techniques may be economi-
cally viable [6–10]. In another arena, any machine with
rotating shafts, bearings, or sliders will have to contend
with flow in the small lubricated gaps between two parts in
relative motion. As speeds increase and tolerances are
reduced, the shear in these gaps increases, and the potential
benefits of slip for inculcating better lubrication and re-
duced wear becomes significant [11,12].

There is no consensus on the high-shear rate behavior of
slip. Molecular dynamics (MD) simulation studies can be
divided broadly into two categories: those that predict
unbounded slip length at high shear rates [11,13–15] and
those that do not [16–20]. (For some of these citations, slip
length was not reported but was calculable from another
reported measure of slip magnitude.) Although all of these
studies used nonequilibrium MD simulations in a planar
Couette geometry, there is one significant simulation pa-
rameter that differentiates the two groups: the wall model.
In the simulations that predict unbounded slip length, the
walls are rigid: the wall atoms are fixed, and therefore do
not have thermal motion. Simulations that predict bounded
slip length at high shear rate employ a different wall model
in which the wall atoms can oscillate about their equilib-
rium position in response to collisions with the fluid mole-
cules. We call these flexible walls. A common approach to
implement flexible walls is to tether the wall atoms to

lattice sites via a linear spring model, thus allowing them
to move and interact while maintaining sufficient rigidity
to contain the fluid molecules.

The primary goal of this Letter is to provide insight into
the underlying atomic-scale physics that leads to slip in the
high-shear rate limit. We report on the high-shear rate slip
as predicted by three methodologies: MD simulation, dy-
namical modeling, and continuum fluid dynamics. The
techniques cover a range of conditions: a polymer solution,
a linear approximation to a simple Lennard-Jones liquid,
and an ideal gas. Yet, the three techniques predict the same
slip behavior in the high-shear limit: an approach to a
constant slip length. We show that previous reports of
unbounded slip arise from neglecting momentum transfer
between the fluid and the solid. We finally show that
controlling the temperature in MD simulations by applying
a numerical thermostat to the fluid will yield the incorrect
slip in the high-shear rate limit.

We start our investigation of high-shear slip behavior
using MD simulation. Our simulations consisted of
n-decane molecules sheared in a Couette flow in which
the upper and lower walls were moved at equal and oppo-
site speeds �U between 3.2 and 1000 m=s. The walls
consisted of atoms forming four planes of a face-cen-
tered-cubic lattice. The channel height h, defined as the
distance between the mean center of mass of the innermost
wall atoms, was 3 nm. Periodic boundary conditions were
applied in the flow direction and transverse to the wall-
normal direction. The n-decane molecules were simulated
using a united atom model (i.e. each molecule is composed
of ten monomers connected by rigid bonds) and allowing
for both bond bending and torsion. The liquid density (96
n-decane molecules) was determined using a grand canoni-
cal (i.e., constant temperature, volume, chemical potential)
Monte Carlo simulation where the liquid is allowed to
reach equilibrium in a way that models the density which
would be present if the channel were filled from a constant
temperature reservoir. Following equilibration, simulations
were run with a time step of 10�6 ns to a minimum
duration of 1 ns.
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All nonbonded interactions were modeled using
Lennard-Jones potentials parametrized by energy � and
length �. For interactions between two atoms of the
same type, the length parameters were �CH3

� 0:377 nm,
�CH2

� 0:393 nm, and �wall � 0:266 nm, and the energy
parameters were �CH3

=kb � 98:1 K, �CH2
=kb � 47:0 K,

and �wall=kb � 529:3 K. Parameters for interactions be-
tween different atom types were calculated using the
Lorentz-Berthelot mixing rules.

Two sets of simulations were run using the above pa-
rameters: rigid walls with a thermostat applied to the liquid
atoms, and flexible walls with only the wall atoms subject
to the thermostat. In the rigid wall case, the wall atoms
were held at their lattice site locations. The fixed wall
atoms did not vibrate, could not conduct heat, and therefore
the simulation temperature was controlled by thermostat-
ting the liquid atoms. For the second set of simulations,
each wall atom was tethered to its lattice site by a linear
spring. For this flexible wall, heat generated within the
liquid was conducted to the walls through atom-atom
interactions and then removed via a thermostat applied to
the wall atoms [21]. Efficient and stable heat conduction
was optimized in our simulations by a spring constant of
3.19�2

wall=�wall. In all cases, the temperature of the thermo-
statted atoms was maintained at 300 K using a Nosé-
Hoover thermostat. Additional simulation detail is in [22].

The mean shear rate _� was determined by fitting a
straight line to the average velocity profile in the central
part of the channel. One measure of slip is the slip speed vs
defined as the difference between the wall speed and _�
extrapolated to the wall. It is more usual to report the extent
of slip by using the slip length Ls � vs= _�.

The slip length determined from our MD simulations is
shown in Fig. 1. For the case of a rigid wall, slip length
becomes unbounded as wall speed is increased. For a
flexible wall, the slip length approaches a constant value
at high shear rates.

The slip behavior is now evaluated using an approximate
solution to a dynamical model which we previously intro-
duced [20,23]. The model is a simple force balance tangent
to the wall,

 m �xi � �
2�g
�

sin
�
2�xi
�

�
� k�xi�1 � 2xi � xi�1�

� �LL�V � _xi� � �LS _xi; (1)

in which the acceleration �xi of the ith atom of massm along
the shear direction is due to (i) the force of magnitude g
arising from the linear array of solid atoms with spacing �,
(ii) the interactions of strength k from the nearest-neighbor
liquid atoms at i� 1 and i� 1, (iii) the force due to shear
from the liquid layer above which is moving at speed V �
_��h=2� 2d�where d is the liquid-liquid spacing normal to

the surface, and finally, (iv) the frictional force, with
coefficient �LS, due to slip along the wall. The coefficient
�LL � ��A=d�=N is the bulk viscosity � times a coeffi-

cient to apportion the continuum viscosity coefficient to
the discrete liquid atoms, where A=N is the area per liquid
atom adjacent to the wall. Equation (1) is augmented by
probabilistic equations normal to the wall, which can re-
move any atom i or insert atoms in accord with diffusion to
and from the bulk [23]. The complete set of equations is
called the variable-density Frenkel-Kontorova (VDFK)
model. The VDFK model can be solved numerically or
approximated analytically [24,25].

At large values of the forcing parameter V, Eq. (1) is
dominated by the force due to shear �LL�V � _xi� and the
friction force due to slip along the wall �LS _xi. The domi-
nant balance of these two terms leads to the result, vs �
�LLV=��LL � �LS� where, since all atoms have the same
velocity, the individual atomic velocities _xi have been
replaced by vs. After using the definition of the slip length,
and approximating the shear rate by _� � �V � vs�=d, we
find

 Ls �
�LL
�LS

d: (2)

This result corroborates the MD simulation finding shown
in Fig. 1 that in the limit of high forcing the slip length
asymptotes to a constant value. Furthermore, Eq. (2) pre-
dicts that the slip length is inversely proportional to the
friction coefficient �LS. Notably, as friction goes to zero,
the slip length becomes unbounded. In a MD simulation,
the case �LS � 0 is modeled by curtailing momentum
transfer from the fluid to the solid, that is, by enforcing a
rigid wall. Hence, in a simulation with rigid walls, Eq. (2)
predicts that the slip length will become unbounded as the
forcing increases, as seen in Fig. 1.

FIG. 1 (color online). Slip length as a function of wall speed.
Data points are shown as diamonds for the rigid walls in which
the liquid was thermostated; circles are for the case of flexible
walls in which the solid was thermostated. The dashed lines are
an aid to the eye, in particular, a line of zero slope is fit to the
flexible-wall data for U > 20 m=s.

PRL 100, 206001 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
23 MAY 2008

206001-2



To describe molecular-scale slip behavior by using con-
tinuum equations [26], we note that (i) near the wall, the
fluid experiences a potential from the wall molecules, and
(ii) the fluid density responds to the wall potential; hence,
fluid compressibility is relevant. To incorporate these fea-
tures, we simulated shear flow of a compressible fluid
between two walls in the presence of a wall potential.
For low Reynolds numbers, the steady-state form of the
conservation of momentum equation for a compressible
fluid is

 �rp� �r2u�
�
3
r�r � u� � �r� � 0; (3)

where u � �u; v� is the fluid velocity, p is pressure, and �
is density. Mass conservation is expressed by r � ��u� �
0. The ideal gas equation of state, p � �RT, is used, where
R is the gas constant and the temperature T is assumed
constant. Shear flow was imposed by applying a given
velocity Ut to the top boundary at which the no-slip
condition was maintained. Near the bottom boundary, the
fluid was subjected to the potential field � �
�ae�ky cos�my�	1:1� b sin�mx�
, where �a, k, m, and b
are parameters [27], and (x, y) are directed tangent and
normal to the wall, respectively. The gradient of this po-
tential gives rise to the body force term in Eq. (3). At the
bottom wall the Navier boundary condition 	@u=@y �
�wuwas used in the flow direction, where�w is the friction
factor at the wall, and v � 0 normal to the wall. This set of
equations and boundary conditions was solved numerically
for different values of the imposed velocity Ut, and the slip
length on the lower wall was obtained as discussed earlier.
Figure 2 shows a plot of slip length versus shear rate for
different values of the wall friction �w. The continuum
equations capture the form of the slip length behavior as
seen in the MD simulations and the VDFK equations,
corroborating that the slip length is nearly constant (here
nearly zero) at low shear rates and subsequently increasing
sharply as shear rate increases. Figure 2 further indicates
that the transition from low to high-shear slip behavior
occurs at _�� ��a=�. The physical mechanism of this
transition is discussed in the next paragraph. Of relevance
here is that at high shear rates, the slip length approaches a
constant which is dependent on the value of �w. After the
change of variable �w � �LS�N=A�, the inset to Fig. 2
shows that the continuum analysis also finds that slip
length is inversely proportional to the friction factor, in
agreement with Eq. (2). Finally, Fig. 2 shows that if there is
no wall friction, the slip length becomes unbounded at
high shear rates.

In this Letter, we have analyzed the high-shear rate limit
of slip. In the small-shear rate limit _�! 0, Green-Kubo
analysis [28] provides a means to analyze slip where
momentum transfer to the wall is absent and slip is domi-
nated by the amplitude of the potential-energy corrugations
due to the lattice of discrete solid atoms. Fluid atoms must
overcome the Peierls-Nabarro (PN) barrier due to the

difference between stable and unstable equilibrium-state
energies [20,23,29]. As shear rate increases, and the speed
of the slipping atoms increases, fluid atoms do not invagi-
nate themselves into the lower levels of the solid potential,
but rather skim over the substrate. Hence, the effective
roughness decreases and the resistance to slip also vanishes
[13,30]. Realistically, though, collisions of fluid atoms
with the wall atoms transfer momentum to the walls. For
a collision between a fluid and a solid atom of mass ratio
M, the exit speed V e of the fluid atom after the collision
will be some fraction ��M;
� of the incident speed V ,
V e � ��M;
�V , where 
 is the impact angle.
Consequently, the momentum lost by the fluid atom, which
is also proportional to its speed, is transferred to the solid
atom. Unlike the PN-dominated slip at low shear described
by the Green-Kubo analysis, we have shown that this
momentum transfer dominates the high-shear rate dynam-
ics of slip. Momentum transfer is incorporated into an MD
simulation by using a flexible wall, into the VDFK model
through the term �LS _x, and into the continuum equations
through the wall friction parameter �wu. This term in the
VDFK and continuum equations is purely frictional; i.e., it
does not model other roles that a flexible wall may play in
an MD simulation, for example, that the oscillatory motion
of the solid atoms may transfer energy back into the fluid
and affect its dynamics. The concurrence of the three
techniques in predicting an asymptotic approach to a con-
stant slip length indicates that momentum transfer resulting
in frictional dissipation is of primary importance.

FIG. 2 (color online). The slip length as a function of normal-
ized shear rate predicted from the continuum equations. Data
points for different values of the nondimensional friction factor
�wh=� (�1; � 2.5;4 0.75;� 0) are connected by dashed lines
as an aid to the eye. For finite values of the friction between the
fluid and the wall, the slip length approaches a constant value in
the high-shear limit. This constant value depends inversely on
the friction factor as predicted by the VDFK model, Eq. (2), as
shown in the inset.
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The value of investigating a limiting behavior is that a
single mechanism dominates all others: differences in the
predictions from alternative possible mechanisms are ac-
centuated which helps identify which is correct. Unlike in
the low-shear limit, we find that, whether for a polymer
melt or an ideal gas, friction is the dominant force as shear
rate becomes large. Accounting for this force yields the
result that the high-shear rate slip length does not become
unbounded, as previously thought, but rather approaches a
constant value. Finally, we show that momentum transfer
to the solid needs to be part of an MD simulation of slip at
high shear rates.

Momentum transfer at the wall can be expected to be
more complex than that expressed by the constant friction
coefficient used in the VDFK and continuum models. Yet,
even with this simplification, these models agree with the
MD simulation findings presented above. At shear rates
even higher than those presented here, above the sound
speed of the solid, our models may need to be amended.
These possible complications may be viewed with some
optimism. Unlike the no-slip boundary condition which is
material independent, the dependence of slip on the mate-
rial properties of the solid may point to new ways to control
fluids, which are not available for flows which adhere to the
no-slip condition.
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