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A first principles calculation of the vibrational modes of Pb(111) thin films of thickness up to 14 layers
reveals the existence of localized vibrational modes at the slab’s surface. Both longitudinal and transverse
surface modes localized a few atomic layers are found at energies above the bulk bands. The frequency of
these modes presents a bilayer oscillatory behavior. The electron-phonon interaction of the slab’s quantum
well states is also calculated. We find a large (small) deformation potential for the lowest unoccupied
(highest occupied) quantum well state. Its absolute value is also oscillatory with the number of layers.
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The possibility of growing Pb(111) thin films on top of
different substrates in a layer by layer regime in a con-
trolled way (see [1,2] and references therein) has opened
the possiblity of tuning different physical properties with
the thin film size. Previous work has shown that quantum
size effects, in particular, quantum well states (QWS), play
a crucial role in the physical properties of these slabs.
Electrical resistivity [3], Hall coefficient [4], work function
[5], roughening temperature [6] etc. show a periodic oscil-
latory variation with the number of layers with a bilayer
periodicity. Oscillations in the interlayer distances have
been recently reported [1] and the equilibrium height dis-
tribution of islands [7] has been discussed along the same
lines. These oscillations can be understood by the confine-
ment of the free electrons in the slabs (for details see [8]),
the periodicity being due to the charge oscillation governed
by the Fermi wavelength Ar. More recently, superconduc-
tivity in slabs has been well established experimentally
[9,10] and the possibility the superconducting critical tem-
perature T displaying oscillatory behavior with the slab
thickness has been proposed based on experimental tun-
neling data [11,12] and treated theoretically by Shanenko
et al. [13]. Similarly, the electron-phonon coupling con-
stant (A) appears to oscillate with the number of Pb(111)
layers in the slab [14].

We have studied, from first principles, the phonon spec-
tra of Pb(111) slabs of different thickness. To obtain the
phonons we have calculated the forces acting on the atoms,
after small deviations of the atoms with respect to their
equilibrium configuration. The forces are calculated
through the Hellmann-Feynman theorem. The total energy
calculations are based on the density functional theory
(DFT)[15,16]. To solve the Kohn-Sham self-consistent
equations we use Vienna ab initio simulation package
(vasp) [17,18]. We use the functional of Perdew and
Wang [19] to approximate the exchange-correlation within
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the generalized gradient approximation. Ultrasoft pseudo-
potentials [20] are used such that only s and p electrons are
included in the valence band. Special care has been taken
to obtain good convergence with respect to reciprocal and
real space sampling, energy cutoff, self-consistency con-
vergence criteria, etc. We perform an “accurate’” calcula-
tion avoiding wraparound errors [17,18]. The energy cutoff
is 200 eV, the number of k points in the two-dimensional
Brillouin zone is 961 in the Monkhorst Pack distribution
and the energy convergence criteria in the self-consistent
loop is 1076 eV. Because of the discrete character of the
QWS, we have used the Methfessel and Paxton [21] smear-
ing method. The layers are relaxed to minimize the equi-
librium forces down to less than 0.01 eV/A . We have
obtained for bulk fcc a lattice constant of 5.03 A in rea-
sonable agreement with the 4.95 A experimental value.

The phonon dispersion relation of bulk Pb-fcc is first
calculated as a check of our method of calculation. Lead is
a soft material such that its phonon spectrum [22] has
anomalies which in turn are related to Fermi surface
features.

To calculate phonon’s dispersion relations in any arbi-
trary direction requires very large unit cells making a
reliable calculation difficult. However, to get the dispersion
relation along symmetry directions, we have constructed
unit cells formed by a few atomic planes. In this way to
obtain the dispersion relations along the (111) and (100) k
space directions we have considered fcc lattice unit cells
containing a given number of (111) and (100) planes and
calculated the phonon frequencies at k = 0. If we take, say,
N layers separated by an interlayer spacing “a”, the al-
lowed k values within the conventional fcc Brillouin zone
are given by k, = 12\,—7;11 withn =0,1,2,.. .,%. This pro-
cedure, within the DFT total energy calculation, provides
an “‘exact’ result since, for the selected vibrational modes,
only the calculated forces between the atoms in the unit
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FIG. 1. Calculated and experimental (Ref. [22]) data of vibra-

tional modes of bulk Pb along the symmetry directions (001) and
(111) for unit cells containing 12 layers (see text). Bold (open)
symbols stand for theoretical (experimental) results. Circles and
squares stand for longitudinal and transverse modes, respec-
tively.

cell are those involved. The results of the phonon disper-
sion calculation for N = 12 are given in Fig. 1. We obtain a
good agreement with experiments similar to previous cal-
culations [23,24] using linear response theory.

Zero parallel momentum phonon modes have been cal-
culated for Pb(111) freestanding slabs of widths ranging
from 3 to 14 layers. Before performing the phonon calcu-
lation we have relaxed the structures such that the forces
acting on all the atoms be smaller than 0.01 eV/ A. We [8],
like previous calculations [25,26], obtain a bilayer oscil-
latory behavior of the slab thickness with a “beating”
every 10 layers; see Fig. 2(c). We consider unit cells of
the required number of layers separated by an empty space.
The vacuum between the slabs is large enough (of the order
of 11 A) to avoid interaction between the slabs. Results of
the localized phonon modes in the different layers are
shown in Fig. 2.

Both longitudinal and transverse surface modes take
place at energies above the corresponding bulk values
(see Fig. 1) due to a 6% contraction of the surface layer.
In the case of the longitudinal modes we have performed
the calculations in two different ways to assess how the
results are substrate independent: in one case we allow all
the atoms in the slabs to move; we then find localized
modes at both slabs surfaces. These modes (with the
same frequency in a hypothetical infinite slab) interact
having then different frequencies. This splitting is smaller
the wider the slab. In another calculation, the atom at one
slab surface is kept fixed obtaining only one localized
mode at the free surface with a frequency intermediate
between those of the free ends slab. A bilayer oscillatory
variation of both surface states is found (Fig. 2), being
more pronounced for the longitudinal modes than in the
transverse ones as expected due to their different character.
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FIG. 2. Frequencies of localized surface phonon modes at
ky = 0 for different slab thicknesses (see text). Panels (a) and
(b) stand for longitudinal and transverse modes, respectively. In
both cases the highest corresponding bulk mode frequency is
indicated. In panel (a) the results considering the cases of both
slab’s ends free (bold symbols) and fixing one while leaving the
other one free (open symbols) are shown. Panel (b) stands only
for the case of one slab’s ends fixed. Panel (c) shows the
contraction of the outermost layer. The bulk layer separation is
291 A.

Presumably, localized modes at the surface will be present
in a semi-infinite crystal as well. In Table I we give the
values of the matrix elements of the dynamical matrix D
between the different layers in the case of a 12 layer slab

. 2 ..
and in the bulk such that D;, ;g = +; c?u,iﬂb;,-,;’ where i, j
stands for the atom, «, 8 = x, y, z, M is the atom mass, E is
the total energy, and u is the displacement of the corre-
sponding atom. We immediately observe the stronger
forces between first and second layers in the slabs respon-
sible of the localized surface mode. The local character of
the surface perturbation is apparent, the matrix elements at
the fourth layer are almost identical to the bulk ones.

For a proper characterization of the localized surface
longitudinal mode we show in Fig. 3 (for several slabs
sizes) the displacement of the different atoms in the pres-
ence of the longitudinal localized mode. The mode is also
compared with the highest bulk mode at the L point of the
Brillouin zone (see Fig. 1). The local character of the mode
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TABLE I. Dynamical matrix elements near the surface and in
the bulk. Only displacements in the direction z perpendicular to
the surface are considered. Label n stands for layer index in the
slab. Label 1 is the surface layer, label 2 is the layer underneath
an so on. The bulk values are obtained with a 12-layers unit cell
along the (111) direction in the fcc lattice.

Surface Surface Surface Surface Bulk
n Dlz,nz D2z,nz DSz,nz D4z,nz D4z,nz
1 —0.033 0.030 0.002 0.002 0.001
2 0.030 —0.046 0.012 0.003 0.003
3 0.002 0.012 —0.034 0.016 0.015
4 0.002 0.003 0.016 —0.038 —0.038
5 —0.002 0.002 0.003 0.014 0.015
6 0.0 0.0 0.0 0.003 0.003
7 0.0 0.0 0.0 0.0 0.001

is apparent, its character and amplitude being almost inde-
pendent of the slab size.

We have calculated the deformation potential of differ-
ent electronic energy levels in the presence of the surface
longitudinal mode. In Fig. 4 we show the effect of the mode
in the electronic energy bands in the case of a 10 Pb(111)
layers slab. The presence of the vibrational mode affects in
a different way the QWS near k; = 0; when the wave-
length of the quantum well state, A, = 2 X n X L, is much
larger than the localization of the surface phonon mode, the
vibrational mode does not affect the energy of the corre-
sponding electronic state, only when A,, is comparable with
the phonon wavelength (see Fig. 3), the interaction is
strong. Mostly the unoccupied quantum well states are
affected by the phonon distortion. In Fig. 4 we also show
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FIG. 3 (color online). Displacement of the atoms in the pres-
ence of the localized longitudinal surface vibrational mode
(Fig. 2). The displacement is in arbitrary units. The different
data stand for different size slabs. In all cases the other slab end
was kept fixed. The longitudinal optical bulk mode at the L point
of the Brillouin zone is also shown (open symbols). The inset
shows an schematic motion of the planes (black circles) in the
presence of the surface vibrational mode. Open circles stand for
the equilibrium positions.

the variation of the total energy with the longitudinal
surface phonon amplitude; a fourth order polynomial fit
for the slabs with 9 and 8 layers gives E = 8162(Au)* +
10342(Au)® +24226(Au)* and E = 7160(Au)* +
11327(Au)® + 13 594(Au)*, respectively, where the en-
ergy is in meV and the Au in A. This indicates small
deviations from harmonicity for small phonon amplitudes;
for instance for a 0.02 Aphonon amplitude the cubic term is
of the order of a 3% of the quadratic contribution. We have
estimated the deformation potential considering the devia-
tion of the energy level with the presence of a mode. In this
way, the deformation potential « is given by a = AE/Au,
where AFE is the energy level shift induced by a phonon of
amplitude Au. In Fig. 5 we show the variation with the
number of layers in the slab of the quantum well states
closest to the Fermi level. We obtain a strong and oscil-
latory behavior for lowest unoccupied molecular orbital
(LUMO), and a weak and nonoscillatory behavior for
highest occupied molecular orbital (HOMO) that can be
measured by means of scanning tunneling spectroscopy.
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FIG. 4. Effects of the longitudinal surface mode on the elec-
tronic structure. The upper panel shows the band structure of a
10 layers slab. Solid lines are the bands without the phonon and
broken lines represent the bands in the presence of the phonon
with a generalized coordinate amplitude (root mean square
displacement) of 0.034 A. Lower panel represents the variation
of the total energy with the phonon’s amplitude. The curves have
been shifted 2 meV for clarity sake. The broken lines are second
order polynomial fits to the total energy data.
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FIG. 5. Slab width dependence of the deformation potential
(see text) of the quantum well states at k; = 0 in the presence of
the longitudinal surface phonon mode. Panels (a) and (b) show
the results for the LUMO and HOMO energy levels.

Whether or not this behavior would induce a oscillatory
bilayer variation of the superconducting critical tempera-
ture would require to extend this calculation to all phonons
and all electronic states, which is far beyond the scope of
this work. We, however, believe that, as far as the oscil-
latory behavior of T is concerned, the analyzed surface
phonon mode is the most relevant since it is related to the
slab width and is coupled to the QWS which, in turn, are
responsible for the oscillatory variation of many other
physical properties.

To summarize, first principles calculation has allowed us
to conclude the following. (i) Finite (and presumably semi-
infinite) Pb(111) slabs have localized surface phonons at
frequencies above the bulk highest value. Although only
phonons at k| = 0 are calculated, they should be present in
a large portion of the two-dimensional Brillouin zone like
the almost dispersionless surface phonons in the Ru(0001)
surface [27]. (ii) In the case of freestanding slabs these
surface modes interact giving rise to two modes (localized
at either surface) with different frequencies. (iii) The fre-
quency of these modes has an oscillatory behavior with a
bilayer periodicity. (iv) The electronic QWS states broad-
ening due to the electron-phonon interaction depends very
much on the character of the QWS considered. (v) The
electron-phonon interaction of the lowest unoccupied

QWS has also an oscillatory variation with a bilayer
periodicity.
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