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We present an effective technique for suppressing the vortex-induced vibrations of bluff bodies by
eliminating the von Kármán street formed in their wake. Specifically, we find that small amounts of
combined windward suction and leeward blowing around the body modify the wake instability and lead to
suppression of the fluctuating lift force. Three-dimensional simulations and stability analysis are
employed to quantify our findings for the flow past fixed and flexibly mounted circular cylinders.
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Vortex shedding from a bluff body is omnipresent in
nature and man-made structures. By bluff-body flow we
mean flows past blunt objects, such as the wind blowing
around a high-rise building or a long bridge, which are
opposed to those past a streamlined object such as an
aircraft wing. The phenomenon has been studied by several
pioneers in fluid dynamics, e.g., Strouhal, Rayleigh,
Benard, and von Kármán, and has remained the focus of
many modern theoretical and experimental studies [1]. Of
interest is the unique Strouhal-Reynolds relationship [2]
and also the type of instability that sustains the vortex
street, irrespective of any external excitations [3,4]. The
asymmetric vortices shed in the bluff-body wake induce
large unsteady side forces that, in turn, can lead to large
structural vibrations if the body is flexibly mounted, espe-
cially in the cross-flow direction [5].

Suppression of the vortex street could reduce such
vortex-induced vibrations (VIV) and the wake turbulence,
with a direct impact on many engineering applications. To
this end, many flow-control techniques have been pro-
posed, e.g., splitter plate, base bleeding, small control
cylinder, to name but a few; see [6] for several representa-
tive techniques, and [7] for a review of passive control
methods. Blowing or suction as a means for cylinder drag
reduction or vortex manipulation has also been the subject
of several previous studies [8–10]. The ability of blowing
or suction to modify the wake has long been recognized
[9,11]. For example, by experimentally ejecting or sucking
fluid through two rows of small holes on the cylinder
surface, Williams et al. [9] observed that the produced
disturbances significantly modified the pattern and fre-
quencies of vortex shedding and the mean flow. Simi-
larly, in their two-dimensional numerical simulations of a
steady suction or blowing applied at the rear stagnation
point around the Reynolds number [12] Re � 47 (at which
the steady flow transitions to an unsteady state with vortex
shedding), Delaunay and Kaiksis [10] observed that for
Re> 47 slight blowing or sufficiently high suction stabi-
lized the wake while for Re< 47 suction destabilized the
wake and blowing had no detectable effect. More recently,

Kim and Choi [13] studied a forcing scheme numerically
for cylinder drag reduction by blowing or suction of fluid
through two slits located on the surface at an angle �90�

from the front stagnation line. It was observed that the in-
phase forcing from the two slits reduced the drag and could
also attenuate or even annihilate the vortex shedding.

There are two fundamental limitations with the flow-
control techniques used so far in suppressing vortex-
induced vibrations. First, they may be effective only for
stationary cylinders (not for flexibly mounted structures).
Indeed, it has been shown for some techniques (e.g., wavy
cylinders and cylinders with bumps) that even though
vortex shedding may be suppressed when the cylinder is
fixed, significant oscillations still develop if the cylinder is
allowed to freely vibrate [14]. Second, almost all active
control schemes proposed require an excessive energy
input that makes them impractical at high Reynolds
numbers.

The control scheme we propose in the current work
addresses both issues. It is very effective in suppressing
the vortex street and the vortex-induced vibrations for
flexibly mounted structures, and it can readily lead to
practical passive control schemes that require no energy
input. Specifically, we consider the flow past a long rigid
circular cylinder under two situations: the cylinder is
(1) fixed (stationary case), and (2) allowed to freely vi-
brate, but only in the cross-flow direction (VIV case). We
investigate the effect of a combined suction and blowing
scheme, in which a steady suction is applied on the wind-
ward half of the cylinder surface while a steady blowing is
applied on the leeward half of the surface. It will be called
the WSLB control (WSLB standing for windward suction
leeward blowing) hereafter in this Letter. We compare
WSLB to two similar schemes: suction-only and
blowing-only, with which a steady suction (or blowing) is
applied on the entire surface.

We have simulated two Reynolds numbers, Re � 500
and 1000. We solve the three-dimensional incompressible
Navier-Stokes equations employing a Fourier expansion
along the cylinder axis (or the spanwise direction, in which
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the flow is assumed to be homogeneous) and a spectral
element discretization in the streamwise–cross-flow
planes. For the VIV case, the cylinder is elastically
mounted and is modeled as a spring-mass oscillation sys-
tem. The coupled fluid-structure equations are solved in a
coordinate system attached to the cylinder axis under
which the cylinder becomes stationary. Details of the nu-
merical techniques for the stationary cylinder simulations
and for VIV simulations are documented in [15].

The WSLB, suction-only, and blowing-only controls
studied here are characterized by a blowing or suction
velocity normal to the cylinder surface with a uniform
magnitude (hereafter called the control velocity, Vcontrol).
In the implementation, the Dirichlet boundary condition is
applied on the cylinder surface in accordance with the
controls; for the case without control, the no-slip condition
is imposed. The computational domain extends from
�20D at the inlet to 40D at the outlet, and from �20D
to 20D in the cross-flow direction; the spanwise dimension
is 3�D. We have performed extensive grid refinement tests
with different resolutions, and validation against experi-
mental results; see [16]. Global physical parameters com-
puted from the simulations without control are in good
agreement with the experimental data [17]. In the simula-
tions, we have employed a mesh with 1860 quadrilateral
elements in the streamwise–cross-flow planes, with the
element order and the number of Fourier planes in the
spanwise direction 6 and 192, respectively.

The effects of WSLB, suction-only, and blowing-only
controls for the stationary case at Re � 500 are compared
in Fig. 1(a), in which we plot the root-mean-square (rms)
lift coefficient versus Vcontrol=U0. We observe that the
fluctuating lift can be significantly reduced, and even com-
pletely suppressed at high control velocities. However, the
three schemes exhibit quite different characteristics.
Suction-only is effective for lift reduction only at high
suction velocities. Low suction velocity, on the other
hand, appears to have the opposite effect; with
Vcontrol=U0 � 0:05 or below, the rms lift coefficient is
actually increased. For WSLB the lift coefficient decreases
linearly as Vcontrol increases and is below a certain value
(0:15U0). Beyond this point, the lift coefficient becomes

essentially negligible. Both WSLB and suction-only can
completely suppress the fluctuating lift at the highest
Vcontrol considered here (0:2U0). For identical Vcontrol

WSLB appears more effective than suction-only in terms
of lift reduction. With blowing-only, the lift coeffi-
cient decreases consistently as Vcontrol increases. At
Vcontrol=U0 � 0:05 blowing-only appears more effective
than the other two schemes; However, as Vcontrol increases
its rate of lift reduction decreases and it becomes the least
effective among the three. At Vcontrol=U0 � 0:2, the fluc-
tuating lift still remains quite significant with this control.
Overall, WSLB appears the most effective among the three
schemes. At low control velocities it avoids the lift increase
with suction-only, while at high control velocities it retains
a high rate of reduction, unlike blowing-only. In Fig. 1(b)
we demonstrate the effect of Reynolds number with WSLB
by plotting the rms lift coefficient versus Vcontrol at Re �
500 and 1000 for the stationary case. The lift reduction
curve at Re � 1000 shows characteristics similar to that at
Re � 500. WSLB control appears equally effective as
Reynolds number increases.

To assess the effect of control on free vibrations, we
have simulated the flow past a freely oscillating cylinder
(in cross-flow direction only) at Re � 500 for two cases:
without control and with WSLB control. We have consid-
ered only WSLB for the VIV case since results from the
stationary case show that it is the most effective among the
three. Figure 2(a) shows the rms cylinder displacement
(normalized by cylinder diameter) versus Vcontrol for two
(structural) damping coefficients (0.0046 and 0.046). The
cylinder mass ratio (with respect to the fluid) is 5.09. The
natural frequency (fN) of the oscillation is set to be equal to
the Strouhal frequency of the flow past a stationary cylin-
der at the same Reynolds number. By natural frequency we
mean the oscillation frequency in the absence of any fluid
effects. Evidently, the oscillation amplitude decreases with
increasing Vcontrol. At high Vcontrol values the oscillation is
completely suppressed. To further demonstrate the effec-
tiveness of WSLB in VIV reduction, we vary the natural
frequency over a range of values. In Fig. 2(b) we plot the
rms cylinder displacement versus the reduced velocity,
U0=�fND�, with and without control, for a fixed
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FIG. 1. Vortex street suppression of a
stationary cylinder: rms lift coefficient
CL versus normalized control velocity
Vcontrol=U0 for different schemes at Re �
500 (a) and for WSLB control at two
Reynolds numbers (b).
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Vcontrol=U0 � 0:1 at Re � 500. This is for a damping co-
efficient 0.0046 and the same mass ratio as before. The
control has significantly reduced the oscillation over the
entire range of reduced velocity values.

The effects of flow control on wake structures are dem-
onstrated by Fig. 3, in which we plot isosurfaces of the
instantaneous intermediate eigenvalue (denoted by �2)
following the vortex identification method of [18]. These
are for the stationary case at Re � 500, without control
[Fig. 3(a)] and with WSLB control [Fig. 3(b)]. The wake
structures have been significantly modified. Compared to
the no-control case, the wake with control is in general
depleted of structures. Most notably, the streamwise braids
in the near wake have diminished substantially and seem to
be clustered at a few spanwise locations. As Vcontrol in-
creases, the wake structures become more severely weak-
ened, and at 0:15U0 and above the structures vanish from
the wake.

To explore the underlying reasons for lift or VIV sup-
pression with flow controls, we have performed a stability
analysis [3] of the stationary case. By solving the Orr-
Sommerfield equation based on the mean streamwise ve-
locity profiles at various downstream (i.e., x) locations, we
can determine the coordinates of the ‘‘critical point’’ [3] in
the complex frequency! plane,!0. Its imaginary part,!I,
is related to the growth rate of perturbations, and the sign of
!I determines the nature of the instability. A positive !I
indicates an absolute instability, and a negative value in-
dicates a convective instability. Figure 4(a) shows the

mapped curves in the ! plane from several lines in the
complex wave number plane (!R denoting the real part of
!). This is for the downstream location x=D � 1:0, with-
out control, at Re � 500. We can clearly observe the
critical point (see curve 4).

We have computed !0 at several downstream x loca-
tions. In Fig. 4(b) we plot !I of the critical points versus x
for several cases. For the case without control, we observe
a region of absolute instability near the cylinder and a
region of convective instability further downstream. With
WSLB the region of absolute instability shrinks and is
displaced downstream; the very near wake also changes
from an absolute instability (no control) to a convective
instability (see the case Vcontrol=U0 � 0:1). As Vcontrol in-
creases, the highest !I value in the absolutely unstable
region decreases. At Vcontrol=U0 � 0:2 all !I have become
negative, suggesting a convective instability in the entire
wake. As a result, the vortex shedding and the fluctuating
lift are completely suppressed. In Fig. 4(c) we plot the loci
in the complex ! plane of the critical point !0�x� found
from local stability analysis as x is varied. The shapes of
the curves suggest the presence of a saddle point in the
complex x domain that determines the frequency of the
global mode, in agreement with the stability criterion of
[4].

In summary, we observe that WSLB is effective to
eliminate the vortex street and the VIV in flexibly mounted
structures. It is an active control scheme requiring external
energy input. Regarding how expensive it is, we first note

FIG. 3 (color online). Effect of control
on wake structures: Isosurfaces of instan-
taneous �2 � �2 (yellow) and �0:8
(cyan) for flow past a stationary cylinder
without control (a) and with the WSLB
control (Vcontrol=U0 � 0:1) (b). �2 is the
intermediate eigenvalue in the method of
[18].
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FIG. 2. VIV suppression with WSLB
control (freely oscillating cylinder): rms
cylinder displacement in cross-flow di-
rection versus the control velocity (a),
and versus the reduced velocity (for a
fixed control velocity) (b).
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that the required control velocity decreases as the structural
damping increases and most surprisingly if periodic on-off
control strategies are set along the cylinder axis (results not
shown here). With respect to the Reynolds number, we
observe that the required normalized control velocities for
elimination of vortex street are about the same for Re �
500 and 1000. More importantly, the technique can be
easily implemented as a passive control scheme by using
porous surfaces or by forming communicating channels
between the forward and aftward stagnation points of
appropriate width. In preliminary simulations, we have
tested several such designs, verifying that indeed this is
feasible with the required channel width decreasing as Re
increases. Results of two recent experiments [19] with
designs along this line have supported the findings of this
Letter, one with the ‘‘guided porosity’’ (flow coming in
through holes positioned along the front stagnation line
and going out through a row of streamwise-oriented slits
located at the top and bottom sides of the cylinder), and the
other with a row of holes connecting the front and rear
stagnation lines. Regarding the effect on the Strouhal
number, we observe in the stationary case that the
Strouhal number initially increases slightly with increasing
Vcontrol, reaching a peak around Vcontrol=U0 � 0:1, and then
decreases as Vcontrol further increases.
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FIG. 4. Stability analysis: (a) Map of lines kI � constant in the ! plane (x=D � 1:0), k being the complex wave number and kI its
imaginary part. The critical point lies at the cusp of curve 4. (b) Imaginary part of the critical point versus streamwise location x.
(c) Loci in the complex ! plane of the critical point !0�x� found from local stability analysis as x is varied.
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