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We consider the no-boundary proposal for homogeneous isotropic closed universes with a cosmological
constant and a scalar field with a quadratic potential. In the semiclassical limit, it predicts classical
behavior at late times if the scalar field is large enough. The classical histories may be singular in the past
or bounce at a finite radius. This probability measure selects inflationary histories but is biased towards
small numbers of e-foldings N. However, to obtain the probability of our observations in our past light
cone these probabilities should be multiplied by exp�3N�. This volume weighting is similar to that in
eternal inflation. In a landscape potential, it would predict that the Universe underwent a large amount of
inflation and could have always been semiclassical.
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Introduction.—The string theory landscape is believed
to contain a vast ensemble of stable and metastable vacua
that includes some with a small positive effective cosmo-
logical constant and the low energy effective field theory of
the standard model. But the landscape by itself does not
explain why we are in one vacuum rather than in some
other. For that one has to turn to cosmology and to a theory
of the quantum state of the Universe.

A manifest feature of our quantum Universe is the wide
range of epoch and scale on which the laws of classical
physics apply, including classical spacetime. Classical
spacetime is a prerequisite for the construction of effective
theories, for cosmology, and for eternal inflation. But
classical spacetime is not a property of every state in
quantum gravity. Rather it emerges only for certain quan-
tum states.

We calculate the probability measure on classical space-
times predicted by the no-boundary wave function
(NBWF) [1] to leading semiclassical order for homoge-
neous and isotropic minisuperspace models with a cosmo-
logical constant and a scalar field with a quadratic
potential. We find the NBWF severely restricts the possible
classical universes and argue that such classicality restric-
tions would act as a strong vacuum selection principle in
the string landscape.

The NBWF predicts the probabilities of entire classical
histories. But we are interested in the probability for our
observations which are restricted to a (thickened) light
cone located somewhere in the Universe and extending
over roughly a Hubble volume [2]. To calculate such
probabilities we must sum the probabilities for classical
histories over all those that contain our data at least once
[3,4]. This defines the probability for our data in a way that
is gauge invariant and dependent only on information in
our past light cone. We will argue that the resulting prob-
abilities favor an inflationary past and, in a landscape
potential, suggest a semiclassical origin.

Classical prediction in quantum cosmology.—In quan-
tum cosmology states are represented by wave functions on
the superspace of three-geometries and spatial matter field
configurations. For the homogeneous, isotropic models
considered here minisuperspace is spanned by the scale
factor b and the value � of the homogeneous scalar field.
Thus, � � ��b; ��.

The no-boundary wave function [1] is defined by the
sum-over-histories

 ��b; �� �
Z
C
�g�� exp�� I�a���; �����=@�: (1)

Here, a��� and���� are the histories of the scale factor and
matter field and I�a���; ����� is their Euclidean action. The
sum is over cosmological geometries that are regular on a
manifold with only one boundary at which a��� and ����
take the values b and �. The integration is carried out along
a suitable complex contour C which ensures the conver-
gence of (1) and the reality of the result.

For some regions of minisuperspace the integral in (1)
can be approximated by the method of steepest descents.
Then the wave function will be well approximated to
leading order in @ by a sum of terms of the form

 ��b; �� � expf��IR�b; �� � iS�b; ���=@g; (2)

one term for each extremizing history. The functions
IR�b; �� and �S�b; �� are the real and the imaginary parts
of the action evaluated at the extremum. In simple cases
these extremizing histories may describe the nucleation of
a Lorentzian spacetime by a Euclidean instanton. But in
general they will be complex—‘‘fuzzy instantons.’’

In order for wave functions of the form (2) to predict an
ensemble of Lorentzian histories with high probabilities
for classical correlations in time further conditions must be
satisfied. A necessary one is the classicality constraint

 j�rS�2j 	 j�rIR�2j; (3)
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where gradients and inner products are defined with the
minisuperspace metric. When (3) holds the action S satis-
fies the Lorentzian Hamilton-Jacobi equation. The NBWF
then predicts the corresponding ensemble of Lorentzian
histories. Their probabilities are exp��2IR�b; ���=@� to
leading order in @.

Two key points should be noted: (1) The no-boundary
wave function provides probabilities for entire classical
histories; (2) the histories in the classical ensemble are
not the same as the extremizing histories that provide the
steepest descents approximation to the integral (1). The
classical histories are real and Lorentzian and may have
two large regions. The extrema are generally complex with
only one large region.

Scalar field model.—We have applied this prescription
for classical prediction to homogeneous isotropic closed
universes with a cosmological constant � and a scalar field
� with a quadratic potential V��� � �1=2�m2�2. We write
the complex homogeneous isotropic metrics that provide
the steepest-descent approximation to the no-boundary
path integral (1) as

 ds2 � �3=���d�2 � a2���d�2
3�: (4)

The Euclidean action I then takes the form
 

I�a���; ����� �
9�
4�

Z
C�0;��

d���a _a2 � a� a3

� a3� _�2 ��2�2��: (5)

We use units where @ � c � G � 1 and define the mea-
sures � � �4�=3�1=2� and � 
 �3=��1=2m. The contour
C�0; �� in the complex � plane connects the south pole � �
0 with an end point � � �where a and� take real values b
and �.

We evaluated the NBWF in the semiclassical approxi-
mation (2) by numerically solving the Friedmann-Lemaı̂tre
equations for each value of b and � along a suitable
complex contour C�0; ��. This gives complex analytic
functions �a���; ����� which are an extremum of the ac-
tion. The value of the action at an extremum gives IR�b; ��
and S�b; ��.

The integral curves of S are the classical solutions when
the classicality constraint (3) is satisfied. The relation
between position and momenta that follows from S means
that, in the semiclassical approximation, the NBWF pre-
dicts nonzero probabilities only for a one-parameter en-
semble of the two-parameter family of classical histories.
Classical histories not in the ensemble have zero probabil-
ity. The relative probabilities for histories in this classical
ensemble are given by exp��2IR�b; ��=@� in the leading
semiclassical approximation. These are constant along the
integral curves. It is convenient to take �0 
 j��0�j to be
the parameter labeling different histories in this classical
ensemble.

The classicality constraint (3) is not satisfied for all
integral curves of S. Specifically, in the interesting regime

where�> 3=2 we find the NBWF requires the Universe to
contain a minimum amount of scalar field energy at early
times to behave classically at late times. (The value of �
based on today’s � would be very much larger.) From now
on we restrict to this range. Similar conclusions were
reached in [5] for the � � 0 case. This is illustrated in
Fig. 1, where we show IR�b; �� for all members of the
ensemble of classical histories predicted by the NBWF in a
� � 3 model with � � 0:03. There is a critical value �c

0

below which there are no classical solutions. The lower
bound �c

0 implies a lower bound on the scalar field in the
corresponding classical histories. The critical value �c

0

increases slightly with � and tends to 1.27 when �! 0,
for fixed m.

The classicality constraint is closely related to the slow
roll condition of scalar field inflation. We make this precise
in Fig. 2 where we plot the trajectories in (H, �) variables
where H is the instantaneous Hubble constant H � _b=b.
We show five members of the ensemble of classical histor-
ies in the� � 3 model for�0 between 1.3 and 2. When we
follow the histories back in time to higher values ofH, they
all lie within a very narrow band aroundH � ��. But this
is precisely the regime that corresponds to slow roll infla-
tionary solutions, as emphasized recently in [6]. Hence the
NBWF plus classicality at late times implies inflation at
early times.

For�0 smaller than a critical value�s
0 >�c

0 the allowed
classical histories of the Universe are singular in the sense
that their matter densities exceed the Planck density. But
for �0 >�s

0 they bounce at a finite radius in the past. This
is possible despite the singularity theorems because a
scalar field and the cosmological constant violate the
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FIG. 1. The values of IR of the one-parameter set of classical
histories predicted by the no-boundary proposal in a quadratic
potential minisuperspace model with � � 3 and � � :03. There
are no classical histories for �0 below a critical value �c

0 at
about 1.2. The Universe therefore requires a minimum amount of
matter to behave classically at late times. A critical value �s

0 at
about 1.5 separates large �0 histories that bounce at a finite
radius when extrapolated back from singular histories for smaller
�0.
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strong energy condition. Near the bounce the Universe
approaches a de Sitter state with radius ����0�

�1. Such
nonsingular solutions form only a small subset of all scalar
field gravity solutions but have significant probability in
the no-boundary state.

Even for the histories in the ensemble that are classically
singular at an early time the NBWF unambiguously pre-
dicts probabilities for late time observables such as cosmic
background radiation fluctuations, because it predicts
probabilities for histories rather than their initial data.
The existence of singularities in the extrapolation of
some classical approximation in quantum mechanics is
not an obstacle to prediction but merely a limitation of
the validity of the approximation. Indeed, there could be
quantum mechanical transitions rather than classical ones
across cosmological singularities that connect two classi-
cal regimes [7].

Individual classical bouncing histories are not generally
time symmetric about the bounce, although the time asym-
metry is small for large �0. However, the reality of the
NBWF implies the ensemble of allowed classical histories
is time symmetric. For every history in this ensemble, its
time reverse is also a member.

For the universes that bounce at a minimum radius it
seems likely that the NBWF will predict that fluctuations
away from homogeneity and isotropy will be at a minimum
at the bounce and grow away from the bounce for at least a
while on either side (cf. [8]). This means that the thermo-
dynamic arrow of time is likely to point away from the
bounce on either side of it. Events on one side are therefore
unlikely to have a causal impact on the other and have
much explanatory value. This is very different from the
causality in pre-big bang universes where the arrow of time
points in one direction throughout the spacetime.

Top-down cosmology.—The NBWF gives the probabil-
ities of entire classical histories. But we are interested in

probabilities that refer to our data which are limited to a
part of our past light cone. Among these are the top-down
probabilities [2] for our past conditioned on our present
data. These are obtained by summing over the probabilities
for classical spacetimes that contain our data at least once,
and over the possible locations of our light cone in them.

These sums can be implemented concretely in our
closed, homogeneous, isotropic minisuperspace models
as follows: Approximate the probability for our data on
the past light cone by the probability of data in a Hubble
volume on an appropriate surface of homogeneity. Assume
that our data are otherwise detailed enough that they occur
only once on this surface [9]. The sum is then over the
spatial locations of our Hubble volume in that surface of
homogeneity in all classical spacetimes that last suffi-
ciently long.

The classicality constraint �0 >�c
0 implies that all

histories in the classical ensemble inflate (Fig. 2). The
condition that the Universe lasts �14 Gyr further restricts
the ensemble, requiring�0 to be larger than a critical value
�g

0 >�c
0. On average each history has the same behavior

shortly after inflation ends and thus predicts the same
observable physics for every Hubble volume at the present
time. But the classical histories differ in the value �i � �0

of the inflaton at the start of inflation, and consequently in
the volume of the present surface of homogeneity. None of
these properties is directly observable and should be
summed over. The sum over our location therefore multi-
plies the NBWF probability for each classical spacetime in
the ensemble by the number of Hubble volumes in the total
present volume—a factor proportional to exp�3N�. This
favors larger universes and more inflation. In a larger
Universe there are more places for our Hubble volume to
be.

Volume weighting increases the probability of a large
number of e-foldings. For quadratic potentials with real-
istic values of m and � the constraints of classicality and
minimum age yield a restricted ensemble of histories
whose volume weighted probabilities slightly favor a large
number of e-foldings [10] that are necessary for explaining
the observed spatial flatness. An important feature of the
volume weighted probability distribution is that there is a
wide region where the probability is strongly increasing
with N. The gradient of the probability distribution
� exp�3N � 2IR� with respect to �i is positive if

 V3 � jV;�j
2 (6)

which, intriguingly, is the same as the condition for eternal
inflation [3,11].

Hence, there is a striking contrast between the uncon-
ditioned bottom-up probabilities that favor small amounts
of inflation and the top-down probabilities conditioned on
our data that favor larger amounts.

Landscape potentials.—A typical landscape potential
will have several saddle points besides the quadratic direc-
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FIG. 2. The no-boundary wave function predicts that all his-
tories that behave classically at late times undergo a period of
inflation at early times as shown here by the linear growth of the
instantaneous Hubble constant H in five representative � � 3
classical histories.
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tions discussed above. For saddle points with more than
one descent direction, there will generally be a lower
saddle-point with only one descent direction, and with
lower action. If this descent direction is sharply curved
we expect the classicality constraint (3) not to be satisfied
in analogy with the case of quadratic potentials. Hence the
no-boundary amplitude for universes that emerge from
around such saddle points will be approximately zero.
Thus only broad saddle points with a single descent direc-
tion will give rise to significant no-boundary amplitudes
for universes that behave classically at late times. Only a
few of the saddle points will satisfy the demanding condi-
tion that they be broad, because it requires that the scalar
field varies by order the Planck value across them. The
classicality constraint, therefore, acts as a vacuum selec-
tion principle.

By analogy with quadratic potentials we expect the
classical histories predicted by the NBWF for �0 near a
broad maximum of V to have an early period of inflation,
during which the scalar field rolls down to a nearby mini-
mum of V. (We assume for simplicity that all vacua are
consistent with the standard model.) As before, the no-
boundary proposal favors a small number of e-foldings,
i.e., histories where �0 � �c

0 [see Fig. 3(a)]. However, in
contrast with quadratic potentials, near a broad maximum
the volume factor more than compensates for the reduction
in amplitude due to the higher value of the potential. The
resulting probabilities of past histories consistent with
present data significantly favor a large number of
e-foldings. This is illustrated in Fig. 3(b) and discussed
in [10].

This leads us to predict that in a landscape potential, the
most probable homogeneous history of the Universe that is
consistent with our data started in an unstable de Sitter-like
state near a broad saddle point of V. Because the dominant
saddle points are well below the Planck density we expect
the most probable histories are bouncing solutions of the
field equations which lie entirely in the semiclassical re-
gime. They have a large amount of slow roll inflation.

During this the scalar field evolves from the saddle point
to the neighboring minima of V, populating only a few of
the possible vacua in the landscape.

Inhomogeneities.—In this Letter we have discussed ho-
mogeneous universes only. However, one can also consider
inhomogeneous perturbations. It appears that the volume
weighting can overcome the gradient action for very long
wavelength perturbations that leave the horizon while (6) is
satisfied. This suggests the NBWF with volume weighting
will predict a Universe that is very inhomogeneous on very
large scales. Eternal inflation [11] also predicts large scale
inhomogeneities but the connection, if any, with this pic-
ture is not yet clear to us. In any event no additional
‘‘measure’’ would be needed to derive the probabilities
for this structure. The NBWF in principle provides that.
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FIG. 3. To account for the different possible locations in the Universe of the Hubble volume that contains our data one ought to
multiply the no-boundary amplitudes by a volume factor. In regions of the landscape around a maximum of the potential (left), we
expect this to have a significant effect on the probability distribution over �0 and hence over N (right). The effect of a classicality
constraint is also shown.
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