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We study diffusion of (fluorescently) tagged hard-core interacting particles of finite size in a finite one-
dimensional system. We find an exact analytical expression for the tagged particle probability density
function using a Bethe ansatz, from which the mean square displacement is calculated. The analysis shows
the existence of three regimes of drastically different behavior for short, intermediate, and large times. The
results are in excellent agreement with stochastic simulations (Gillespie algorithm).
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Introduction.—Recent advances in the manufacturing
of nanofluidic devices allow studies of geometrically con-
strained nanosized particles in quasi-one-dimensional sys-
tems in which exclusion effects are important [1].
Situations in which large molecules are hindered to over-
take also occur in living systems such as protein diffusion
along DNA [2]. Furthermore, biological cells are charac-
terized by a high degree of molecular crowding [3].

In this Letter, with experiments in mind, akin to [4], we
focus on diffusive motion of tagged finite-sized hard-core
interacting particles (unable to overtake) (Fig. 1). Such
single-file systems show interesting behavior where the
t1=2-scaling (t denotes time) of the mean square displace-
ment (MSD) S�t� � h�yT �t� � yT ;0�

2i in position yT �t� of
the tagged particle �yT ;0 � yT �0��, for an infinite system
with fixed concentration, is most striking (h:i denotes en-
semble average). Also, the probability density function
(PDF) ��yT ; tjyT ;0� � �T is Gaussian [5,6]. Even though
single-file diffusion has received much attention [7–10], to
our knowledge, very few exact results are given for finite-
sized particles in finite systems. One exception is [8] where
the PDF for N diffusing point particles on a finite interval
was obtained. However, asymptotic expressions were only
given when the system was made infinite (keeping the
concentration finite). Here, we go beyond previous results
in the following ways. First, finite-sized particles are con-
sidered, and we show that the N-particle PDF can be
written as a Bethe ansatz solution. Second, we perform a
(nonstandard) large N-analysis of �T , keeping the system
size finite, showing the existence of three dynamical re-
gimes: (i) t� �coll � 1=%2D where �coll denotes mean
collision time, D the diffusion constant, and % � N=L
particle concentration where L is the length of the system;
(ii) �coll � t� �eq where �eq � L2=D is the equilibrium
time; and (iii) t	 �eq. Notably, only (i) and (ii) are found
in infinite systems. Asymptotic expressions for �T are
derived in regimes (i)–(iii) which show good agreement
with Gillespie simulations [11].

Statement of the problem.—We study N hard-core inter-
acting particles with linear size � diffusing in a one-
dimensional box of length L (Fig. 1). The probability of
finding the particles at positions ~y � �y1; . . . ; yN� at time t,
given that they initially were at ~y0 � �y1;0; . . . ; yN;0�, is
contained in the N-particle conditional PDF P � ~y; tj ~y0�
which is governed by the diffusion equation
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and the initial PDF is given by

 P � ~y; 0j ~y0� � ��y1 � y1;0� � � ���yN � yN;0�; (4)

where ��z� is the Dirac delta function. The tagged particle
PDF studied here is given by [12]

y1 y2 yT yN

L/2−L/2 ∆

FIG. 1 (color online). Diffusing particles where mutual pas-
sage is excluded, i.e., yj 
 yj
1 �� for j � 1; . . . ; N � 1.
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where �eq;T 0 �
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dy01;0 � � �dy

0
N;0��yT ;0� y

0
T ;0
�P eq� ~y00�,

with integration regions R � fyj
1 � yj � �; j � 1; . . . ;
N � 1; y1 � ��L���=2; yN 
 �L���=2g and R0 �

fyj
1;0 � yj;0 � �; j � 1; . . . ; N � 1; y1;0 � ��L���=2;
yN;0 
 �L� ��=2g. Initially, the particles are distributed
according to the equilibrium density,

 P eq� ~y� �
N!

�L� N��N
�N�1
l�1 ��yl
1 � yl ���; (6)

i.e., the particles are distributed uniformly in the box. The
function ��z� is the Heaviside step function.

Bethe ansatz solution.—The Bethe ansatz [9] gives a
closed expression for the PDF satisfying Eqs. (1)–(4):
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where x1; . . . ; xN and x1;0; . . . ; xN;0 are given in terms of ~y
and ~y0 according to (j � 1; . . . ; N)
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�
j�

N 
 1

2

�
; (8)

where �‘=2 
 x1 
 x2 
 . . . 
 xN 
 ‘=2 and �‘=2 

x1;0 
 . . . 
 xN;0 
 ‘=2. The bracket in Eq. (7) contains
N! terms corresponding to all permutations of momenta
~k � k1; . . . ; kN . The quantities Slj are scattering coeffi-
cients which contain information about the pair interaction
between particles l and j, and are in general functions of kl
and kj. For the case of a pair interaction on the form given
by Eq. (2), Slj � 1 (Slj � 0 for noninteracting particles)

[12]. The time dependence enters through e�E� ~k�t with
dispersion relation (‘‘energy’’) E� ~k� � D�k2

1 
 . . .
 k2
N�,

obtained from Eq. (1). The functions ��kj; xj;0� carry
information about the boundary and initial conditions
Eqs. (3) and (4), and for the finite box studied
here ��kj;xj;0��2

P
1
m��1cos�kj�xj;0
‘=2��eikj�2m
1=2�‘.

For an infinite system (‘! 1), ��kj; xj;0� � e�ikjxj;0 [9].

Integrating Eq. (7) over k1; . . . ; kN gives

 P � ~x; tj ~x0� �  �x1; x1;0; t� �x2; x2;0; t� � � � �xN; xN;0; t�


  �x1; x2;0; t� �x2; x1;0; t� � � � �xN;0; kN; t�


 remaining permutations of x1;0; . . . ; xN;0;

(9)

where  �xj; xl;0; t� �
R
1
�1

dkj
2� ��kj; xl;0�e

ikjxje�Dk
2
j t is the

integral representation of the (free) single particle PDF
for particle j. Notably, as �! 0, the N-particle PDF in
[8] is recovered. The single particle PDF is also found in
[8] (for � � 0) but in an unsuitable form for studies of
finite systems. We obtained a more convenient expression,
where the large time limit is easily tractable, by finding the
Laplace transform to  �xj; xl0; t�, and inverting it back
using residue calculus [12]:
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where ����m � 1� ��1�m and Fm�t� � e��m��
2Dt=‘2

.
Tagged particle density.—Integrating Eq. (9) according

to Eq. (5) [8] leads to an exact form of the tagged particle
PDF in terms of Jacobi polynomials P��;	�n �z� [13], given
by [14]
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where 
 � 
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notes the number of neighbors to the left (right) of the
tagged particle, and
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Arguments yT , yT ;0, and t were left implicit. Also,
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where
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Normalization gives  R � 1�  L,  RL � 1�  LL, and
 LR � 1�  RR, which completely determines �T . A
MATLAB implementation of �T is available upon request.

Figures 2 and 3 illustrate the typical behavior of the
finite single-file system via stochastic simulations and �T .
Figure 2 shows particle trajectories produced by the
Gillespie algorithm (a Monte Carlo-like algorithm based
on a lattice model which is equivalent to the master equa-
tion [11]). Figure 3(a) illustrates the time evolution of �T

for one tagged particle in the middle of the ensemble, and
one by the edge at short (solid line), intermediate (dashed
line), and large times (dotted line). The agreement between
the analytical result Eq. (11) and the stochastic simulation

is excellent. Examples of the equilibrium PDF compared to
the point-particle case � � 0 is shown in panel (b).

Three dynamical regimes.—Figure 4 shows the results
of a numerical calculation of the MSD of a tagged particle
located in the middle of the system. The solid curves (blue
online) were obtained from numerical integration of S�t��RL=2���NR
1=2�
�L=2
��NL
1=2�dyT �yT �yT ;0�

2�T , using Eq. (11), for
N � f3; 21; 141g. From Fig. 4, three distinct regimes (i)–
(iii) can be distinguished, which become more pronounced
as N increases.

In order to attain a deeper understanding of how regimes
(i)–(iii) emerge, �T [Eq. (11)] was analyzed for large N,
keeping L finite. A saddle-point approximation of
��a; b; c; 
� [Eq. (12)] proved unsuitable since it does
not hold for all 
 2 �0; 1� (i.e., all times). However, using
asymptotic forms of the Jacobi polynomial from [15], a
large N-expansion of ��a; b; c; 
� valid for all 
 could be
obtained [16], and asymptotic expressions for �T in (i)–
(iii) and crossover times (�coll and �eq) were deduced:

FIG. 3 (color online). (a) Tagged PDF [Eq. (11)] for the
middle (red online) and the rightmost (blue online) particle,
where N�=L � 0:25, at three instances of time, with y5;0=L �
�0:15 and y11;0=L � 0:3. (b) Equilibrium density [Eq. (16)]
compared to the point-particles case and stochastic simulations
( � ) (t=�eq � 2, 500 lattice points and 105 ensembles).

0 0.005 0.01 0.015
−0.5

−0.25

0

0.25

0.5
.

FIG. 2 (color online). Particle trajectories, generated by the
Gillespie algorithm, in a system where N � 11.
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(i) Short times (t� �coll): For short times, very few
particle (wall) collisions have yet occurred and the parti-
cles are (to a good approximation) diffusing independently
of each other. In this limit, �T is Gaussian �T �

�4�Dt��1=2 exp���yT � yT ;0�
2=�4Dt��, with MSD S�t� �

2Dt, which is in agreement with the numerical integration
of Eq. (11), see Fig. 4.

(ii) Intermediate times (�coll � t� �eq): Here, the dy-
namics is dominated by particle collisions, leading to
single-file behavior: S�t� / t1=2 (Fig. 4). The PDF in this
regime (for particles located not too close to the edges) is
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1�������
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2
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2
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(15)

which is a Gaussian with a concentration dependent MSD
S�t� � ��1� %��=%�

���������������
4Dt=�

p
. Thus, the simple rescaling

%! %=�1� %�� takes us from previous point-particle
results [5,6] to the finite particle case.

(iii) Large times (t	 �eq): For large times, �T reaches
equilibrium and S�t� is constant (Fig. 4). The equilibrium
density �eq;T is found using limt!1
 � 1, leading to
lim
!1� � 1 [17], and a large t expansion of Eq. (13):
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Notably, Eq. (16) can also be found by direct integration of
Eq. (6), or from entropy arguments [12]. The MSD S�t!
1� � Seq when NL � NR is
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L� N�

2

�
2 ��1=2���2�NR 
 1��
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 1���NR 
 5=2�
;

(17)

where ��z� is the gamma function.
Conclusions.—We have found an exact solution to a

nonequilibrium many-body statistical mechanics problem
involving finite-sized particles diffusing in a finite system.
The analysis showed the existences of three different re-
gimes for which exact analytical expressions of the tagged
particle PDF were found. The results showed excellent
agreement with simulations. Tagged particle motion
showed sensitivity to environmental conditions (e.g., con-
centration and system size), suggesting that fluorescently
labeled nanoparticles could be used as tiny sensors.
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FIG. 4 (color online). Mean square displacement for a tagged
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f3; 21; 141g. Solid curves (blue online) show numerical calcula-
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