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The variety of multipartite entangled states enables numerous applications in novel quantum informa-
tion tasks. In order to compare the suitability of different states from a theoretical point of view,
classifications have been introduced. Accordingly, here we derive criteria and demonstrate how to
experimentally discriminate an observed state against the ones of certain other classes of multipartite
entangled states. Our method, originating in Bell inequalities, adds an important tool for the character-

ization of multiparty entanglement.
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Entanglement is the crucial resource for quantum infor-
mation processing and as such the “currency” to pay with
in almost all applications. For two-partite quantum states
measures have been developed that uniquely specify the
value of this resource. In contrast, for n-partite states one
has to distinguish not only between fully separable or en-
tangled, but also between genuine n-partite, bi-separable,
and tri-separable entangled states, etc. Further, even states
with the same level of separability are different in the sense
that they have, for example, different Schmidt rank [1] or
that they cannot be transformed into each other, e.g., by
local unitary (LU) or, more generally, by stochastic local
operations and classical communication (SLOCC) [2,3].
From an experimental point of view, classifying states ac-
cording to the latter property is reasonable, as states from
one SLOCC class are suited for the same multiparty quan-
tum communication applications. Thus, it is of importance
to know not only the amount but also the type of entangle-
ment contained in a particular state. In other words, the
value and the type of the currency is what matters.

Tools to detect the entanglement of a state exist, most
prominently entanglement witnesses [4]. An alternative
method, relying on the correlations between results ob-
tained by local measurements, are Bell inequalities. Being
originally devised to test fundamental issues of quantum
physics they allow us to distinguish entangled from sepa-
rable two-qubit quantum systems [5,6]. Bell inequalities,
meanwhile extended to three and more partite quantum
states [7—9], can thus serve as witness for both entangle-
ment and the violation of local realism. Recently it was
observed that for each graph state all nonvanishing corre-
lations (or even a restricted number thereof) form a Bell
inequality, which is maximally violated only by the re-
spective quantum state [10,11]. In particular, the Bell in-
equality for the four-qubit cluster state is not violated at all
by Greenberger-Horne-Zeilinger (GHZ) states [10].
Naturally several questions arise: Whether one can in
general apply such Bell inequalities to discriminate par-
ticular states from other classes of multipartite entangled
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states, if so, whether they can also be constructed and
applied for nongraph states, and finally, whether there are
other operators that allow one to experimentally discrimi-
nate entanglement classes.

We address these problems starting from Bell inequal-
ities. We present a way to construct Bell operators [12] that
are characteristic for a particular state, i.e., operators that
have maximal expectation value for this multipartite state,
only. With respect to experimental applications we further
aim that the expectation value can be obtained by a mini-
mal number of measurement settings. Under certain con-
ditions, we can relax the initial requirement that char-
acteristic operators have to also be Bell operators, which
allows further reduction of the number of settings.
Comparison of the experimentally obtained expectation
values with the maximal expectation values for states
from other entanglement classes enables us to distinguish
observed states from other multiparty entangled states.

To construct a Bell operator, we exploit certain correla-
tions between measurement results on individual qubits
that are specific for multipartite quantum states [9]. All
correlations for a state |X) are summarized by the correla-
tion tensor 7T, e.g., for four qubits, T, = (X|(o; ® 07; ®
oy ® o))|X), with i, j, k, | € {0, x, y, z}, where oy, = 1 and
0.y, are the Pauli spin operators. To obtain a Bell operator

By, which is characteristic for a state |X), we require that

|X) is the eigenstate of @X with the highest eigenvalue
Amax- If the eigenvalue is not degenerate, this implies that

A

By, acting on another state cannot lead to an expectation
value greater than or equal to A,y

An operator, which is in general not a Bell operator, but
trivially fulfills the condition to have |X) as the only
eigenstate with A, = 1, is the projector or fidelity opera-

tor Fy = |X)X| and

" 1
TXZRZTijkl(Ui®Uj®Uk®UI)' (1)
i),k

For most of the relevant quantum states the major part of
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the 256 coefficients T;j; is zero. Thus, the number of

measurement settings necessary for the evaluation of ? x
is much smaller than for a complete state tomography. We
consider the nonvanishing terms as relevant correlations
characterizing the state and use them for the construction

of @x- As we will see in the following examples, there are
states for which a small subset of the relevant correlations

is enough to construct fABx~ Once this is accomplished, one
can calculate the upper bound, vy, on the expectation
values vy = (Y|By|Y) = (By)y for states |Y), which be-
long to other classes than |X). Consequently, a state under
investigation with (By), = v, cannot be an element of
any class of states with v} < v .

Note that B x induces a particular ordering of states that
is neither absolute nor related to some entanglement of the
states and, similar to the entanglement witness, depends on
the operator B . Yet, now we do not only detect a higher or
lower degree of entanglement, we distinguish different
types of entanglement. One might say that a state with a

higher (By) is more ““|X)-type” entangled. The same is

true for a mixed state p with expectation value v, =

T By p] = <@X>p’ in the sense that it cannot solely be
expressed as a mixture of pure states |Y;) with vy < v,
but it has to contain contributions with a higher “X-type”
entanglement.

Summarizing, one can obtain a witness of “|X)-type”
entanglement by constructing a discrimination operator,
which has |X) as a nondegenerate eigenvector with the
highest eigenvalue. After all, such an operator is neither
unique nor does it necessarily have to be a Bell operator.
However, a Bell operator unconditionally detects the en-
tanglement of the investigated state, even if the state space
is not fully known. In contrast, witness operators might
detect a state to be entangled though a description of
measurement results based on local realistic models or,
for that purpose, based on separable states in higher di-
mensional Hilbert spaces is possible [13]. If one trusts in
the representation of the state, as shown below, even more
efficient operators for state discrimination can be devised.

Let us now apply our method to the state |W,) [14]:

1
V3
+11001) + |1010>)} (2

1
w,) = [|oon> +11100) = 2 (l0101) + [0110)

This state was observed in multiphoton experiments [15]
and can be used, for example, for decoherence free quan-
tum communication [16], quantum telecloning [17], and
multiparty secret sharing [18].

The fidelity operator for that state j'-'% contains 40
relevant correlation operators (0; ® o; ® o ® g7), out of
which 21 describe four-qubit correlations (i.e., do not
contain o). Already 10 are enough to construct a charac-

teristic Bell operator that has |W,) as nondegenerate eigen-
state with maximum eigenvalue A, = 1:

6@%=0'X®a'y®0'y®a'x+0'y®o'x®0'y®0'x
—0,®0,80,80,1t0,®0,®0,00,
+o,80,80,®0,—0,80,80,®0,
to,®0,80,80,—0,80,80,90,

t+o,80,80,80,+t0,80,80,80,. (3)

@% can be used to discriminate an experimentally ob-
served state with respect to other four-qubit states. With the
chosen normalization we obtain the limit for any local
realistic theory by replacing o; by some locally predeter-
mined values [; = *1, leading to the inequality
(By Javel = 3. Table I shows the bounds on the expecta-

tion value of @% acting on some classes of prominent
four-qubit states [including a fully separable state |sep),
any biseparable state |bi-sep), as well as the four-partite

entangled Dicke state D'? [19], the GHZ [20], W [2], and
cluster (C) [21] state]. These bounds were obtained by
numerical optimization over either LU or SLOCC trans-
formations, respectively. In particular, with the bound for
an arbitrary biseparable state ZA?\I, , provides also a sufficient
condition for genuine four-partite entanglement.

We now employ these results for the analysis of experi-
mental data. To observe the state |W,), we used photons
generated by type Il noncollinear spontaneous parametric
down conversion and a variable linear optics setup.
Essentially, a four-photon emission into two modes is
overlapped on a polarizing beam splitter (PBS) and sub-
sequently split into four modes. Depending on the setting
of a half-wave plate (in our case oriented at 45°) preceding
the PBS and conditioned on detecting a photon in each of
the four outputs, a variety of states can be observed [22].
The fidelity of the experimental state pv,, determined from

21 four-qubit correlations, was Fy, = Tr[ j:% pw,] =
0.90 = 0.01. The analysis of the experimental state using

the Bell operator QAB% required less than half of the mea-
surement settings and leads to Vpy, = 0.91 = 0.02 [see

Fig. 1(a)]. This value is, according to Table I, sufficient
to prove that the experimental state is genuine four-qubit

TABLE I. Maximal expectation values (By -

State Under LU Under SLOCC
|W,) 1.000 1.000
ID) 0.926 0.926
|GHZ) 0.805 0.805
|C) 0.515 0.764
W) 0.736 0.758
|bi-sep) 0.722 0.749
|sep) 0.217 0.217
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FIG. 1 (color online). Histograms of the four-photon coinci-
dence statistics for the different measurement settings. Slots at
the ordinate indicate different events for a particular basis
setting: e.g., 0011 for basis zzzz means detection of photons in
the state |HHVV). (a) Statistics of the ten correlation measure-
ments, required for the evaluation of the operator @q, x
(b) Statistics of the eight correlation measurements, required
for the evaluation of the operator B.

entangled and cannot be of W-, cluster-, or GHZ-type in
the sense described above.

The class of states that can experimentally not be ex-
cluded as it has the second largest expectation value in
Table I is represented by the so-called symmetric four-
qubit Dicke state [19,23]

L
V6
+11010) + |1100)). )

ID@) = —(10011) + [0101) + [0110) + [1001)

In turn, for the Dicke state a separate, characteristic Bell
operator B can be constructed. Again, |Df)> has 40
4
correlation operators with nonzero expectation value, out
of which 21 describe original four-qubit correlations.
Naturally, the exact values of the correlations 7, differ
compared to |W,). In the case of |D22)> they are such that
eight of the correlation operators are already sufficient for
the construction of B e:
4
6B

D<42>:_0'x®0'z®0'z®0'x_0'x®0'z®0'x®0'z

—0,®0,Q0,80,+0,®0,80,80,

—0,%0,80,80,-0,80,90,90,

-0,®0,80,®0,t0,80,80,80,, (5)
with A« =1 for IDE‘Z)}. This operator has a remarkable
structure: It is of the form o, ® M3 + o, ® M}, where M;
and M} are three-qubit Mermin inequality operators [7].

Thus, by applying a kind of GHZ argument [20], the bound
for any local realistic theory can be determined to be

|<:BDE‘2)>avg| = % .

TABLE II. Maximal expectation values (B po)-
4

State Under LU Under SLOCC
IDP) 1.000 1.000
|W,) 0.889 0.889
|GHZ) 0.833 0.833
|C) 0.500 0.706
|bi-sep) 0.667 0.667
(W) 0.613 0.619
|sep) 0.178 0.178

Table II shows the maximal expectation values of B PO
4

by the same set of four-qubit states as before. Considering

the structure of B ., further omitting correlation opera-

D(42) »
tors, for example, one whole block o, ® M5 (or o, ® M}),
leaves us with a four-qubit Mermin-type Bell operator. The
corresponding Bell inequality is still violated by IDEf)).

However, it is not characteristic anymore for |D§2)> as it is
maximally violated by the state |GHZ), = %(IRRRR} +
[LLLL)) and the biseparable state |BS)= ﬁ[l +) X
(IRRR) + i|[LLL))] (where |*)= %(lo} +1]1)) and
IR, L) = \%(IO} * i|1)) are the eigenstates of o, and o,
respectively). It is a particular property of the Dicke state to
have correlations in two planes (x-z and y-z planes) of the
Bloch sphere, whereas a GHZ state, for instance, is corre-
lated only in one plane (here the x-z plane). This quite
characteristic feature is reflected in the construction of
B D Recently, an experiment has been performed to
observe the state IDf)) [23]. In order to increase the state
fidelity F by a higher degree of indistinguishability, here
we reduced the filter bandwidth from 3 nm to 2 nm,
resulting in F = 0.92 = 0.02 (compared to F = 0.84 =
0.01 in [23]). For the state’s experimental analysis with the
Bell operator (5) we find v, = 0.90 % 0.04 [see Fig. 1(b)].
Thus, it is genuine four-qubit entangled and cannot be, e.g.,
of W-, cluster-, or GHZ-type. Yet, this value is again just at
the limit to separate against | Wy).

If one is sure about the structure of the state space—that
means that in our case it is spanned by four qubits—we can
equally well use other operators instead of the Bell opera-
tors. Let us first drop some of the correlations from B P>
e.g., the terms (0'®*) and (o®*). The resulting discrimina-

tion operator D ¢ is not a Bell operator anymore, but still

DY
has |D§2)> as the only eigenstate with maximal eigenvalue
Amax = 1 (after proper normalization). Interestingly, as
seen in Table III, it introduces a new ordering of states
with a bigger separation between |D22)> and |V¥,). With

vf,) o = 0.90 = 0.05 we can discriminate against this state
D
4

with a better significance. Note the reordering, which

results in the GHZ state having now the second highest
eigenvalue, indicates that this operator analyzes the various

200407-3



PRL 100, 200407 (2008)

PHYSICAL REVIEW LETTERS

week ending
23 MAY 2008

@

TABLE III.  Alternative characteristic operators for D,
State (D)l (SLOCC) KD/ )| (SLOCC)
4 4
| DY) 1.000 1.000
|GHZ) 0.905 0.937
|C) 0.871 0.905
W) 0.869 0.905
[Py 0.869 0.901
|bi-sep) 0.750 0.872
|sep) 0.192 0.139

states from a different point of view. This is quite plausible
as it uses different correlations for the analysis. An even
more radical change in the point of view is possible with
the data we dropped above, i.e., (0®) and (o®*). Relying
on the particular symmetries of the Dicke state, from these
measurements we can evaluate the discrimination operator

1 IDf) = (G240 + GXh0o))’], where, eg, o7, =
1®1®0,,®1 [24]. Comparing the observed value

UPDUI‘” = 0.96 = 0.013 with the bounds for other states
4

(Table IIT) we see that we can discriminate our state against
all states of the respective classes with only two settings.
Analogous considerations can be applied for the construc-
tion of characteristic operators for other states [25], where
the number of settings scales polynomially with the num-
ber of qubits compared to the exponentially increasing
effort for state tomography.

In conclusion, here we showed that characteristic (Bell)
operators, i.e., operators for which a particular state only
has maximal expectation value, allow us to distinguish this
state from the ones out of other classes of multipartite
entangled states. A simple, though not yet constructive,
method to design discrimination operators is based on the
correlations between local measurement settings that are
typical for the respective quantum state. The low number
of measurement settings significantly reduces the effort
compared with standard analysis. Employing characteristic
symmetries and properties of the state under investigation
can even further reduce the effort to a number of settings
that scales polynomially with the number of qubits, thereby
rendering the new method a truly efficient tool for the
characterization of multipartite entanglement.

We thank D. Bruff, M. Horodecki, and M. Wolf for
stimulating discussions. We acknowledge the support by
the DFG-Cluster of Excellence MAP, the DAAD/MNiSW
exchange program, the EU Projects QAP and SECOQC.
W.W. is supported by QCCC of the ENB and the
Studienstiftung des dt. Volkes, and W. L. by FNP.

[1] B.M. Terhal and P. Horodecki, Phys. Rev. A 61,
040301(R) (2000); A. Sanpera, D. BruB, and M.

(2]
[31
(4]
[51
(6]

(71
(8]

[16]

(17]
(18]

(19]
[20]

(21]

(22]
(23]

[24]

[25]

200407-4

Lewenstein, Phys. Rev. A 63, 050301(R) (2001); Y.
Tokunaga, T. Yamamoto, M. Koashi, and N. Imoto,
Phys. Rev. A 74, 020301(R) (2006).

W. Diir, G. Vidal, and J.I. Cirac, Phys. Rev. A 62, 062314
(2000).

F. Verstraete, J. Dehaene, B. DeMoor, and H. Verschelde,
Phys. Rev. A 65, 052112 (2002).

M. Horodecki, P. Horodecki, and R. Horodecki, Phys.
Lett. A 223, 1 (1996).

N. Gisin, Phys. Lett. A 154, 201 (1991).

B. M. Terhal, Phys. Lett. A 271, 319 (2000).

N.D. Mermin, Phys. Rev. Lett. 65, 1838 (1990).

A.V. Belinskii and D.N. Klyshko, Phys. Usp. 36, 653
(1993); W. Laskowski, T. Paterek, M. Zukowski, and C.
Brukner, Phys. Rev. Lett. 93, 200401 (2004); K. Nagata,
W. Laskowski, M. Wiesniak, and M. Zukowski, Phys. Rev.
Lett. 93, 230403 (2004).

R.F. Werner and M. M. Wolf, Phys. Rev. A 64, 032112
(2001); M. Zukowski and C. Brukner, Phys. Rev. Lett. 88,
210401 (2002).

V. Scarani, A. Acin, E. Schenck, and M. Aspelmeyer,
Phys. Rev. A 71, 042325 (2005).

O. Giihne, G. Téth, P. Hyllus, and H. J. Briegel, Phys. Rev.
Lett. 95, 120405 (2005); G. Toth, O. Giihne, and H.J.
Briegel, Phys. Rev. A 73, 022303 (2006).

S.L. Braunstein, A. Mann, and M. Revzen, Phys. Rev.
Lett. 68, 3259 (1992); R. F. Werner and M. M. Wolf, Phys.
Rev. A 61, 062102 (2000).

A. Acin, N. Gisin, and L. Masanes, Phys. Rev. Lett. 97,
120405 (2006).

H. Weinfurter and M. Zukowski, Phys. Rev. A 64,
010102(R) (2001).

M. Eibl, S. Gaertner, M. Bourennane, C. Kurtsiefer, M.
Zukowski, and H. Weinfurter, Phys. Rev. Lett. 90, 200403
(2003); S. Gaertner, M. Bourennane, M. Eibl, C.
Kurtsiefer, and H. Weinfurter, Appl. Phys. B 77, 803
(2003); J.-S. Xu, C.-F. Li, and G.-C. Guo, Phys. Rev. A
74, 052311 (2006).

M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A.
Cabello, and H. Weinfurter, Phys. Rev. Lett. 92, 107901
(2004).

M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, Phys.
Rev. A 59, 156 (1999).

S. Gaertner, C. Kurtsiefer, M. Bourennane, and H.
Weinfurter, Phys. Rev. Lett. 98, 020503 (2007).

R.H. Dicke, Phys. Rev. 93, 99 (1954).

D. Greenberger, M. A. Horne, and A. Zeilinger, Going
beyond Bell’s Theorem (Kluwer Academic, Dordrecht,
1989); D.M. Greenberger, M.A. Horne, and A.
Zeilinger, Am. J. Phys. 58, 1131 (1990).

R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188
(2001).

W. Wieczorek et al. (to be published).

N. Kiesel, C. Schmid, G. Téth, E. Solano, and H.
Weinfurter, Phys. Rev. Lett. 98, 063604 (2007).

G. Té6th and O. Giihne, Phys. Rev. A 72, 022340 (2005); G.
Téth, J. Opt. Soc. Am. B 24, 275 (2007).

G. Té6th and O. Giihne, Phys. Rev. Lett. 94, 060501 (2005);
O. Giihne, C.-Y. Lu, W.-B. Gao, and J.-W. Pan, Phys. Rev.
A 76, 030305(R) (2007).



