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We study the competition between the Wigner crystal and the Laughlin liquid states in an ultracold
quasi-two-dimensional rapidly rotating polarized fermionic dipolar gas, and find that the Wigner crystal
has a lower energy below a critical filling factor. We examine the quantum crystal to liquid transition for
different confinements in the third direction. Our analysis of the phonon spectra of the Wigner crystal
taking into account the phonon-phonon interactions also shows the stability of the Wigner crystal for
sufficiently low filling factors (� < 1=7).
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Recently, remarkable progress has been made in studies
of strongly correlated systems of ultra cold gases. A semi-
nal breakthrough was the observation of Mott insulator-
superfluid transitions in Bose gases in optical lattices [1],
followed by studies of low dimensional gases, fermionic
superfluidity or ultracold disordered gases (for recent re-
views see [2,3]). A particularly fascinating route toward
creation of strongly correlated states is the one that uses
rapidly rotating gases. The rotation is formally equivalent
to a magnetic field (in the rotational frame), which reor-
ganizes free-particle states into discrete highly degenerate
Landau levels. As a result, the properties of the system
become very sensitive to interparticle interactions, in an
analogy with the fractional quantum Hall effect (FQHE)
for electrons [4], that exhibit a variety of strongly corre-
lated states, among which the Laughlin liquid [5], and the
Wigner crystal [6] are the most famous. This analogy has
been pointed out in the context of ultracold atomic gases
with short range interactions in Refs. [7], but an experi-
mental observation of the FQHE in this case is difficult,
partially due to the smallness of the energy gap in the
spectrum of quasihole excitations. This problem may be
overcome in rotating quasi-2D polarized dipolar gases [8],
in which the long-range tail of the dipole-dipole interaction
results in incompressible Laughlin states with gapped ex-
citations. In this sense, rotating dipolar gases can be viewed
as the most close neutral analog to electron systems with
Coulomb interactions in a strong magnetic field.

The dipolar interactions in a quasi 2D system could also
lead to a crystal ground state similar to the electron Wigner
crystal. In the case of an electron gas, both in the presence
and in the absence of a magnetic field, the Wigner crystal is
formed at low densities (filling factors [9]) where the
Coulomb interactions (�1=R, where R is a typical length
scale) dominate over the kinetic energy (�1=R2) cf. [10].
On the contrary, for nonrotating dipolar gases (where
interactions scale as 1=R3) it was argued [8] that the ground
state is a crystal at high densities, as shown in Refs. [11] for

the case of bosonic dipolar gas. Remarkably, in the case of
a rotating dipolar gas, the Wigner crystal phase is expected
at low densities [8], similar to the electrons in a magnetic
field. Dipolar gases, therefore, present a very unique ex-
ample of the system which, being rotated, behaves simi-
larly to the electrons in the regime of the FQHE in a strong
magnetic field, but demonstrates different behavior in a
nonrotating case. This opens an unprecedented possibility
for the observation and detailed studies of strongly corre-
lated states of the FQHE and quantum phase transitions
between them in clean and well-controlled conditions for
possible future applications. It is especially appealing in
view of the recent experiments with the dipolar Bose
condensate of Chromium [12,13], and progress in trapping
and cooling of dipolar molecules [14].

In this Letter we demonstrate the existence of a Wigner
crystal phase in a rapidly rotating gas of polarized dipolar
fermions by comparing it with the competing liquid state.
We then examine the stability of the Wigner crystal by
incorporating phonon-phonon interactions, and identify
the border of stability (spinodal). It appears that the
Wigner crystal is the stable ground state of the systems
for low filling factors, typically for � < 1=7.

We consider a gas of fermionic polarized dipolar par-
ticles with a dipole moment d in a rotating cylindrical trap,
tightly confined and polarized along the axis of rotation z.
For a sufficiently strong confinement in the axial direction,
all particles are in the ground state of the axial motion, and
the many-body wave function has the form

  3D�fri; �ig� �  2D�frig��l
����
�
p
��N=2 exp

�
�
XN
i�1

�2
i =2l2

�
;

where ri � �x; y� and �i are radial and axial coordinates of
the particles, respectively, l is the extension in the axial
direction, N is the total number of particles, and  2D is the
wave function of the system in the xy plane. The confine-
ment in the axial direction results in an effective interpar-
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ticle interaction v2D�r� in the 2D plane:
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where r is the distance between two dipoles in the 2D

plane, �12 � �1 � �2, and R12 �
�����������������
r2 � �2

12

q
. For r� l the

potential is v2D � d2=r3, while for r < l the effective
potential increases logarithmically, v2D � �d2=l3�	���������

2=�
p

ln�l=r�. The wave function  2D obeys the
Schrödinger equation with the effective 2D Hamiltonian
in the rotational frame:

 H �
X
i

�
�

@
2

2m
�i �

m
2
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i

�
��Lz � VD; (1)

where � is the rotational frequency, !? is the radial trap
frequency, VD �

P
i<jv2D�jri � rjj� describes the dipole-

dipole interparticle interaction, and Lz is the z component
of the total angular momentum. The Hamiltonian (1) can
be rewritten in the form

 H �
X
i

1

2m
��i@ri �Ai�

2 � ���!?�Lz � VD (2)

with Ai � m!?ez 	 ri and, therefore, it formally de-
scribes a system of charged particles in a constant magnetic
field with the cyclotron frequency !c � 2!?. For non-
interacting particles (VD � 0) in the regime of the critical
rotation, !? � �, the properties of the Hamiltonian (2)
are well known: the spectrum consists of highly degenerate
levels En � @!c�n� 1=2� called Landau levels. In the
following, we restrict ourselves to a system of particles
occupying only the lowest Landau level.

The wave function of a noncorrelated Wigner crystal on
the lowest Landau level is [15]:

 �C�fzig� �A
Y
i

exp
�
�1

4l20
�jzi � Rij

2 � ziR


i � z



i Ri�

�
;

(3)

where zi � xi � iyi is the complex representation of the
2D vector ri, Ri the (complex) lattice site, l0 �

���������������
@=m!c

p
the magnetic length, and A denotes the antisymmetriza-
tion over zi, that can be omitted for sufficiently low filling
factors � � 2�l20n. One can check that similar to the case
of classical dipoles, the energy is minimal for a triangular
lattice with particles centered at positions Ri �

l1b1 � l2b2, where l1;2 are integers, b1 � a�0; 1�, b2 �

a�
���
3
p
; 1�=2, and a is the lattice constant determined by

the density n of the gas a2 � 2=
���
3
p
n � 4�l20=

���
3
p
�. The

energy of the crystal state equals

 UC � h�CjVDj�Ci

� d2n3=2�0:2823� 0:2146�� 0:3388�2 � 0:7456�3

� 2:0676�4 � . . .�;

where � � �n�2l20 � l
2� and the first term corresponds to

the energy of the crystal of classical pointlike dipoles,
Ecl �

P
i<jd

2=jl1b1 � l2b2j
3 � 5:513d2=a3.

Competing liquid states can be represented by fermionic
Laughlin states

 �L�fzig� �
Y
i<j

�z1 � zj�
M exp

�
�
X
i

jzij
2=4l20

�
; (4)

characterized by an odd integer M � 1=� (recent compu-
tations for a system with small numbers of dipolar particles
[16] show a remarkable overlap of the exact ground state
with the Laughlin state). The energy is UL � ��=2�	R
1
0 rg�r�v2D�r�dr, where g�r� is the pair correlation func-

tion that can be calculated using standard 2D plasma
analogy [5]. We calculated g�r� and UL for all odd M
from 1 to 19 for a gas of 512 particles to guarantee the
required accuracy.

The comparison of the energies of the Wigner crystal
and of the Laughlin liquid for different filling factors � and
extensions l in the axial direction are shown in Fig. 1. We
see that below some critical value �c, which depends on l,
the Wigner crystal has a lower energy and, therefore, for
� < �c the ground state is expected to be a crystal. Note
that in calculating the energies we use the simplest trial
wave functions for liquid and crystal states. A better esti-
mate could follow from considering the wave functions of
quantum Hall liquids of composite fermions [17] with the
filling factors, which are closer to the critical one than
1=M, and of the correlated Wigner crystals [18]. We,
however, do not expect a significant change of our result
because at low densities the used wave functions already
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FIG. 1 (color online). Energy per particle for the Wigner
crystal (dotted line) and for the Laughlin liquid (solid line) as
a function 1=� for l � 0. The inset shows the critical filling
factor as a function of the extension in the z direction.
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take into account the most important effects of the inter-
particle correlations. For the same reason we could expect
similar behavior from a bosonic dipolar gas. To support the
above picture, we demonstrate the stability of the crystal at
small � and approach the liquid-crystal transition from the
crystal phase.

We analyze the stability of the crystal phase by consid-
ering its phonon spectrum taking into account the phonon-
phonon interactions (anharmonicity effects). The appear-
ance of purely imaginary phonon frequencies will indicate
the instability of the crystal and, therefore, the transition to
a liquid state. Note that this does not actually determine the
transition point, rather establishes the upper bound (spino-
dal) for the crystal phase.

In the harmonic approximation the phonon eigenfre-
quencies can be obtained from the dynamic equations for
displacements u�l of particles along the �-axis from their
equilibrium positions Rl in the lattice [19]

 m �u�l �
X
�l0

��2��l;�l0u�l0 �!c"�� _u�l0; (5)

where ��2��l;�l0 � @2UC=@R�l@R�l0 is the dynamical ma-
trix, �, � � x, y, and "�� is the antisymmetric tensor,
"xy � 1. The last term in Eq. (5) corresponds to the
Coriolis (Lorentz) force due to the rotation (magnetic
field).

Without rotation, !c � 0, Eq. (5) in the quasimomen-
tum representation reads: !2 ~u��k� �

P
�F���k�~u��k�,

where mF��0 �k� �
P
l exp��ik�Rl �Rl0���

�2�
�l;�l0 is the

Fourier transform of ��2��l;�l0, and the eigenvalues !2
s�k�

of F��0 �k� determine the frequencies of the transversal
(s � T) and longitudinal (s � L) phonons. The phonon
frequencies for l � 0 are shown in Fig. 2. They are linear

in k for k
 a�1: !T � �3=
���
8
p
�!dak and !L �

������
11
p

!T ,

where !d �
�����������������
d2=ma5

p
sets the typical value for the fre-

quency of phonons. For a rotating crystal, !c � 0, the
phonon spectrum becomes [19,20]
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� �
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����������������������������������������������������������
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2� 4!2
L!
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q
:

In the case !c � !s, one has !� � !c and !� �
!L!T=!c.

Higher order (anharmonic) terms in the expansion of
the energy of the crystal with respect to the displacements
of particles from their equilibrium positions result in
phonon-phonon interactions and, therefore, in the renor-
malization of the phonon frequencies. At a given quasimo-
mentum k, the renormalized frequencies correspond to the
poles of the Fourier transform G���!;k� of the phonon
Green function G���t; l� l� � i���t�hu�l�t�u�l0�0�i �
���t�hu�l0�0�u�l�t�i�0 with ��t� being the step function
(for more details on Green functions for phonons in crys-
tals see, e.g., [21]). The Green function in the harmonic
approximation is G�0��1

�� �!;k� � f
P
s�T;LM

�s�
���!

2
s�k� �

!2� � i"��!c!gm=@, where M�s�
�� � e�s�� e

�s�
� is the projec-

tor to the eigenmode s with the polarization e�s�, and the
poles ofG�0��� are at!�!��k�. In the presence of phonon-
phonon interactions, the Green function obeys the Dyson
equation G�1

���!;k� � G�0��1
�� �!;k� � �a��!;k�, where

the phonon self-energy function � incorporates all the
effects of phonon-phonon interactions.

We calculate the phonon self-energy in the one-loop
approximation (the validity of this approximation was dis-
cussed in Refs. [22–24]). This corresponds to taking into
account only the fourth ��4� � @4UC=@R

4 and the square
of the third ��3� � @3UC=@R3 order anharmonic terms; see
Fig. 3. We then solve the Dyson equation numerically by
successive iterations until we either obtain a self-consistent
solution or the iteration breaks down due to the appearance
of purely imaginary phonon frequencies. At very low fill-
ing factors the phonon-phonon interactions do not play any
significant role and the system behaves harmonically.
However, the effects of anharmonicity become progres-
sively important with increasing the filling factor, and,
finally, at some critical filling factor �c there appear purely
imaginary frequencies signaling the instability of the crys-
tal. We always observe this phonon instability for k! 0.
This indicates the breakdown of the crystalline order and−0.5
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FIG. 2 (color online). Energy of the transverse !T (lower
surface) and longitudinal !L phonons.
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FIG. 3. One-loop diagrams for the phonon self-energy.
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rules out any possible structural phase transition.
Therefore, �c sets the upper bound for the stability of the
crystal. The critical filling factor depends on the confine-
ment l in axial direction as well as on the ratio of !d=!c
that measures the strength of the dipole-dipole interaction
relative to the Landau level spacing. For l � 0 we find
��1
c � 4:33 exp��0:0021!c=!d� � 5:77. Note that for
!c � !d the critical filling factor �c becomes insensitive
to the strength of the interparticle interaction. In this limit
the Wigner crystal is stable for � < �c � 0:174, which is in
a good agreement with our previous energetic considera-
tion for the tight confinement along the z axis, l < l0. We

also calculate the Lindemann parameter � �
���������
hu2i

p
=a—

the ratio of the average displacement of a particle in the
lattice from its equilibrium position to the lattice spacing a.
For !c � !d we find � � 0:28 that is within the range of
values of the Lindemann parameter for various 2D crystals.

We see that the filling factor is the critical parameter that
controls the ground state of the system. The way of ma-
nipulating the filling factor in experiments with rotating
gases depends on an experimental setup. In the case of a
critical rotation with an extra (quartic) confinement [25]
this can be achieved by changing the number of particles
(the size of the system is fixed by an extra confinement).
For a purely harmonic confinement and ‘‘under critical’’
rotations [26,27], the filling factor can be changed by
varying the difference ��!?. In this setup, the size of
the system and, therefore, the filling factor is determined
by a competition between the interparticle interaction VD

and the ‘‘tilting’’ term ���!?�Lz [see Eq. (2)]. In both
cases, the appearance of a crystal order could be detected
by studying the shot noise correlations using the Hanbury
Brown–Twiss effect [28] in a similar way as it was used to
observe the Mott insulator-superfluid transition in a lattice
Bose gas [1].

In conclusion, we show that a rapidly rotating polarized
2D dipolar gas undergoes a transition from a liquid into a
crystal when the filling factor becomes less that some
critical value (typically for � < 1=7). This shows that
rapidly rotating polarized dipoles behave in a way similar
to electrons in a strong magnetic field (regime of the
quantum Hall effect), and thus provide a new experimental
possibility for studying the fractional Hall effect in a
completely different system, as well as creating strongly
correlated states useful for various applications.
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[21] H. Böttger, Principles of the Theory of Lattice Dynamics

(Physik Verlag, Weinheim, 1983).
[22] V. M. Bedanov, G. V. Gadiyak, and Yu. E. Lozovik, Phys.

Lett. A 109, 289 (1985).
[23] Y. E. Lozovik, D. R. Musin, and V. I. Yudson, Sov. Phys.

Solid State 21, 1132 (1979).
[24] Y. E. Lozovik, V. M. Farztdinov, and A. Abdullaev,

J. Phys. C 18, L807 (1985).
[25] V. Bretin et al., Phys. Rev. Lett. 92, 050403 (2004).
[26] J. R. Abo-Shaeer et al., Science 292, 476 (2001).
[27] V. Schweikhard et al., Phys. Rev. Lett. 92, 040404

(2004).
[28] R. Hanbury Brown and R. Q. Twiss, Nature (London) 177,

27 (1956).
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