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We report our experimental and theoretical studies of inwardly propagating chemical waves (antiwaves)
in a single-phase reaction-diffusion (RD) system. The experiment was conducted in an open spatial
reactor using chlorite-iodide-malonic acid reaction. When the system was set to near Hopf bifurcation
point, antiwaves appeared spontaneously, as predicted using both the reaction-diffusion (RD) equation and
the complex Ginzburg-Landau equation (CGLE). Antiwaves change to ordinary waves when the system
was moved away from the Hopf onset, which still agreed with RD simulations but could not be predicted
by CGLE. We thus witnessed a new type of antiwave—wave exchange. Our analysis showed that this
exchange occurred when the CGLE broke down as the system was far from the Hopf onset.
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Recently, a new type of traveling waves, the inwardly
rotating spirals (antispirals) and the inwardly propagating
concentric waves (antitargets) were experimentally ob-
served by Vanag et al. in the Belousov-Zhabotinsky (BZ)
reaction that dispersed in water droplets of a water-in-oil
aerosol OT (AOT) microemulsion (BZ-AOT system) [1–
3]. This discovery raised great interests in the field of
nonlinear dynamics. A series of theoretical studies have
been carried out and the mechanism of antiwaves behavior
has been explained using CGLE and the RD models [4–7].
While Vanag’s experimental observations were success-
fully simulated using a model that describes the water-in-
oil microemulsion system [2,3], theoretical studies suggest
that antiwaves should exist in a simpler RD system, pro-
vided that the system is near the Hopf bifurcation [5–7].
However, so far no such observation has been reported in
experiments. The purpose of this study is to identify anti-
waves in a single-phase system, to study their behaviors,
and to compare the experimental result with the theoretical
predictions.

The chlorite-iodide-malonic acid (CIMA) reaction is
one of the model systems in the investigation of pattern
formations in RD media [8–11]. Two special features make
this reaction suitable for the study. First, there exists a
mathematical model that can faithfully describe the reac-
tion dynamics [11–13]. Second, it is relatively easy to put
the system near the Hopf bifurcation. Because of these two
features, we selected CIMA reaction as our reaction system
to investigate antiwaves. With the guide of the theoretical
analysis, we purposely conducted our experiments near the
onset of Hopf bifurcation. Both antitargets and antispirals
were observed in the experiments. But we found that in
most cases antitargets dominate the system because they
had a larger oscillation period; it suppressed antispirals
with smaller periods. We also observed ordinary spirals
instead of targets when the system was away from the onset
of Hopf bifurcation. The exchange of antiwaves to ordinary

waves were different from the previous theoretical results
predicted using CGLE.

Our experiments were conducted in a spatially open
reactor as described in previous studies [9,10]. The reac-
tion medium was a transparent disk of 2% agarose gel,
2 mm in thickness and 25 mm in diameter. A well-defined
concentration of poly(vinyl alcohol) (PVA) was preloaded
in the gel. Here, PVA acts both as a color indicator of tri-
iodide ions in the reaction system and as an agent to
influence the effective diffusivity of tri-iodide. In previous
works [9,10], a high concentration of color indicators was
used in the CIMA reaction to study Turing patterns. Here,
we decreased its concentration so that Hopf bifurcation
could take place. The agarose gel was sandwiched between
two porous glass disks, which prevent PVA in the gel from
flowing out, keeping the concentration of PVA in the
reaction medium constant. The opposite two sides of po-
rous glass disks were, respectively, in contact with two
reactant reservoirs (I and II), where the reactants were
continuously refreshed by highly precise chemical pumps
and kept homogeneous by magnetically stirring. The whole
system was surrounded with a thermostat; its temperature
was kept at 8:0� 0:5 �C. Images of traveling waves were
registered by a CCD camera. The data were recorded in a
computer via a frame grabber.

We chose the feeding concentration of malonic acid in
reservoir I (�MA�I) as the control parameter. The concen-
trations of other reactants were kept fixed. The reaction
condition was chosen so that the CIMA reaction was
close to a supercritical Hopf bifurcation. The bifurcation
takes place when �MA�I is increased to across a
threshold (�MA�c) (value is extrapolated from the mea-
surements of wave amplitude), so that �MA�I � �MA�c
measures the distance from the onset. Under each condi-
tion, we waited enough time (two hours) before taking a
record, so that the system could relax to its asymptotic
state.
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When the control parameter was set to beyond but near
the critical value, antitarget waves and antispiral waves
spontaneously appeared in the reaction medium. Usually
the period of antitargets were larger than that of antispirals,
asymptotically an antitarget dominated the whole system.
A sequence of snapshots in Fig. 1 (see also supplementary
video [14]) shows a typical example of an antitarget. One
observes that chemical waves emerge at the periphery,
propagate inwardly, collide, and disappear at a center.
These kinds of waves are qualitatively different from the
ordinary target waves. The wavelength of the antitarget
was measured to be 0.94 mm, the period was 50 s, and the
wave speed was 0:019 mm=s.

In order to build a phase diagram of the system, we
systematically changed the control parameter to adjust the
distance to the onset of Hopf bifurcation, which was mea-
sured to be �MA�c � 5:0 mM. At �MA�I � 6:0 mM, an
antitarget was observed at upright corner of the system,
as the arrow pointed in Fig. 2(a). But disordered plane
waves appeared far away from the target center (it is hard
to tell these plane waves propagated outwardly or in-
wardly). At �MA�I � 8:0 mM, the antitarget began to be
suppressed by plane waves, as shown in Fig. 2(b). In this
case, the center of the antitarget (pointed by an arrow) was
almost pushed out of the reaction medium by plane waves.
The plane waves changed to outwardly rotating spirals
when the �MA�I was further increased, as shown in
Fig. 2(c). At the same time, antitarget disappeared at the
boundary. When �MA�I became 12.0 mM, the system was
full of outwardly rotating spirals [Fig. 2(d)].

The phase diagram was recorded in Fig. 3(a), which also
included the period of different waves. The diagram can be

split into three different regimes, an antitarget regime (AT),
an antitarget–ordinary spiral transition regime (AT–OS),
and ordinary spiral regime (OS). Although previous analy-
sis using CGLE predicted that wave–antiwave transition
takes place when the wave number k goes to zero [4–7], we
did not observe such transition in experiments. Instead we
saw [Fig. 2(c)] ordinary spirals gradually push antitargets
out of the system.

FIG. 1. Experimental observations of antitarget waves in the
CIMA reaction. A and B are reference points. Pictures are
recorded in different time within one period (a) t � 0,
(b) t � T=5, (c) t � 2T=5, (d) t � 3T=5. The concentrations
of the reactants are �PVA� � 5 g=L, �KI�I;II � 3 mM,
�Na2SO4�

I;II � 4:5 mM, �H2SO4�
I � 20 mM, �NaClO2�

II �
22mM, �NaOH�II � 1 mM, �MA�I � 8 mM. The field of view
is 7.5 mm in diameter.

FIG. 2. Experimental observations of exchange of waves’ be-
havior as the distance to the Hopf onset increases. �MA�I in
(a) 6 mM; (b) 8 mM; (c) 9 mM, (d) 12 mM. The concentrations
of other reactants are kept fixed: �PVA� � 6 g=L, �KI�I;II �
3:6 mM, �Na2SO4�

I;II � 4:5 mM, �H2SO4�
I � 20 mM,

�NaClO2�
II � 22 mM, �NaOH�II � 1 mM.

FIG. 3. (a) Measured periods of the antitargets (�) and the
normal spirals (�) in CIMA reaction with different concentra-
tions of MA. (b) Measured periods of the antitargets (�) and the
spirals (�) in the CIMA RD model as a function of a; the solid
lines represent the winning pattern in the competition between
target and spiral in the RD medium, and the dashed line
represents the loser one. The dotted line and the dash-dotted
line give, respectively, the behavior of the targets and the spirals
predicted by CGLE. Here AT represents antitarget, AT-OS
represents antitarget—ordinary spiral transition, and OS repre-
sents ordinary spiral.
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To understand the dynamics underlying the phenomena
presented above, we conducted computer simulations and
theoretical analysis. The CIMA reaction mechanism in a
homogeneous RD medium can be described by the Lengel-
Epstein model [11–13]. The no-dimensional form of the
equations are as follows:

 @x=@t � a� x� 4xy=�1� x2	 �Dxr
2
rx

@y=@t � b�x� xy=�1� x2	� �Dyr
2
ry;

(1)

where x and y represent, respectively, the no-dimensional
concentration of I� and ClO�2 ; a and b are parameters
determined by the control parameters in the experiment.
There is a unique uniform steady state solution in Eq. (1)
given by �x0; y0	 � �a=5; 1� a2=25	. The linear stability
analysis of the fixed point (x0, y0) showed that the steady
state becomes unstable and the system undergoes a Hopf
bifurcation if b < bc � 3a=5� 25=a. This transition in-
duces periodic oscillations of the concentrations in the
CIMA reaction, with an oscillation amplitude jAj and an

intrinsic frequency !c �
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To conduct nonlinear analysis and get the corresponding
CGLE from the RD model, solutions (x, y) in Eq. (1) were
decomposed as [15,16]:
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Using the reductive perturbation method and after an in-
tensive analytical study, we derived the corresponding
CGLE of Eq. (1):
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The CGLE has a traveling wave solution W�r0; t0	 �
F�r0	ei�kCGLEr0�!CGLEt0	 with a selected wave number kCGLE

and a frequency !CGLE � �� ��� �	k2
CGLE. Translating

this analytical result back to the RD system, we deduced
that the wave number of the traveling wave in CIMA
reaction should be

 kCIMA �

�����������������������
a1�b� bc	

�1

s
kCGLE (5)

and the frequency !CIMA should be:

 !CIMA � �!CGLE � a2=a1	a1�b� bc	 �!c (6)

Thus the group velocity of waves in the RD reaction is

vgr �
@!CIMA

@kCIMA
� 2

����������������
2a1�b�bc	
Dx�Dy

r
��� �	kCGLE. Note that since

the wave number kCGLE takes the same sign as �� �
[5,17], the group velocity is positive. Then the phase waves
move outwardly (inwardly) for positive (negative) phase
velocity. The phase velocity is calculated to be vph 


�!c

����������������
Dx�Dy

2a1�b�bc	

q
=kCGLE, so that vph is negative when kCGLE

is negative, i.e., when �< �. If we set b � 7:6, Dx �
0:07, Dy � 0:075 in Eq. (1) as Ref. [11], this condition in
the Lengel-Epstein model means antiwaves appear when
a > 9:9. Since the onset of Hopf bifurcation is aHopf 


15:4 under the given condition, the pattern observed in the
RD medium should be antiwaves. To test this prediction,
we integrated Eq. (1) with a � 15:5, which corresponds
� � �1:524 and � � �0:023 in Eq. (3). The simulation
result [Figs. 4(a) and 4(b)] indeed shows target and spiral
waves propagating inwardly, as the arrows point.

In the following, our simulation and analysis were fo-
cused on the pattern competition in order to explain three
different regimes observed in the experiment. The RD
model of Eq. (1) were used in the simulation, which started
when the system is near the Hopf onset. The initial condi-
tion is an antispiral. Then we introduce an inhomogeneity
in the medium by choosing a small area (3� 3 grids) away
from the spiral tip and keeping the values of x � 0 and
y � 0 in the region. This small area plays as a pacemaker
of target waves in simulations. Typical examples of simu-
lation results are illustrated in Fig. 4. The period of the
spirals and the targets as a function of the control parame-
ters a are plotted in Fig. 3(b). At a low value of a, the
system was near the onset of Hopf bifurcation. As pre-

FIG. 4. Simulation results of dimensionless Lengyel-Epstein
model for b � 7:6, Dx � 0:07, Dy � 0:075. a: (a) 15.5, t1;
(b) 15.5, t2 (t2 > t1); (c) 18.0; (d) 18.5. The system moves
away from Hopf onset as a increases. Equation (1) is integrated
using the alternating-direction implicit method (ADI) with no-
flux boundary conditions. The time and spatial steps are 0.01 and
2.0, respectively.
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dicted by the CGLE, both antitarget and antispiral could be
seen in the medium separately; the period of antitargets
was larger than that of antispirals [Fig. 3(b)]. However,
when they coexist in the same medium [Fig. 4(a)], the
antitarget will gradually suppressed the antispiral, which
can be seen from Fig. 4(b). The reason is that, given the
same wavelength, an inwardly propagating wave with a
longer period will spend a longer time to collide in the
wave center, making its wave number larger. Eventually
only the antitarget could be observed in this area. This is
consistent with the experimental observation.

When we increased the value of a, the system would go
far away from the Hopf onset. In this process we obtained
antitarget—ordinary spiral exchanges. The transition from
the antitarget to ordinary spiral is very slow; as a result, we
had a region of overlap (17:8< a< 18:3) where both
antitarget and ordinary spiral could be seen in the medium.
Taking a � 18:0 as an example, both antitarget and ordi-
nary spiral can be observed in the simulation result
[Fig. 4(c)]. The mechanism of this kind of transition be-
tween antitargets and spirals is still not clear now, which
also exists in the experiments. Notice that according to the
CGLE prediction, all patterns observed under the condi-
tions given by Fig. 4 should be antiwaves, and the anti-
wave–wave exchange should occur only through k! 0
[5,6]. Here in the RD simulation, we witnessed a different
type of transition where antitarget is gradually pushed out
by spiral, which could not be explained by CGLE. As the
control parameter a was further increased so that the
system was further away from the Hopf onset, we observed
only a normal spiral, as shown in Fig. 4(d). For normal
waves, a larger period provides a disadvantage in pattern
competition (just opposite to antiwaves), spiral waves will
eventually suppress target pattern in the RD medium [seen
in Fig. 3(b)].

We notice that in the regime of antiwave—wave ex-
change there exists a disagreement between experimental
observation and simulation. In the experiments, the ex-
change accompanied by the appearance of disordered
plane wave (Fig. 2), while in the simulations no such
phenomenon was observed. The reason of the appearance
of disordered waves is not yet clear; we suspect the slight
inhomogeneity of the experimental medium is one of the
major causes.

At last, we checked the validity of the CGLE when the
RD system went far away from the onset of Hopf bifurca-
tion. To do this, we monitored the period of targets and
spirals measured in the RD system and the corresponding
CGLE in simulations. The value of � and � in the CGLE
were deducted from Eq. (4) and the dimensionless period
in the CGLE was translated using Eq. (6). As shown in
Fig. 3(b), when the control parameter a was near the Hopf
bifurcation point, the periods predicted by the CGLE is
close to the real periods measured in the RD system. On the
contrary, when the value of a increased so that the RD
system is away from the Hopf onset, the difference in the
periods diverged. This study demonstrates that the CGLE

is a good approximation of the RD system only when the
RD system is close to the Hopf onset. When the RD system
goes far away from the onset, the CGLE cannot be used to
forecast patterns behavior in the RD system any more.

In conclusion, this study presents a clear example of
antiwaves in a simpler single-phase RD system. A new
type of phase diagram was observed both in experiments
and in RD simulations, which could not be predicted using
the CGLE. The breakdown of CGLE in this case reminds
us that one needs to be very careful in using CGLE to study
a RD system, especially when the RD system is away from
the onset of Hopf bifurcation. Finally, we notice that a new
type of metamaterial so-called ‘‘left hand’’ media has been
in the frontier research in the condensed matter physics. In
this type of metamaterials electromagnetic waves behave
like antiwaves [18]. The study of the antiwaves in non-
linear systems may provide some hint in this field of study.
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