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The problem of RNA genomes packaged inside spherical viruses is studied. The RNA-capsid attraction
is assumed to be nonspecific and occurs at the inner capsid surface only. For weak attraction, RNA
concentration is maximum at the center of the capsid to maximize their configurational entropy. For
stronger attraction, RNA concentration peaks near the capsid surface. In the latter case, the competition
between the branching of RNA secondary structure and its adsorption to the inner capsid results in the
formation of a dense layer of RNA near capsid surface. The layer thickness is a slowly varying
(logarithmic) function of the capsid inner radius. Consequently, the amount of RNA packaged is
proportional to the capsid area (or the number of proteins) instead of its volume. The numerical profiles
describe reasonably well the observed RNA concentration profiles of various viruses.
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Viruses attract broad interest from the physics commun-
ity due to their ability for spontaneous self-assembly. Many
viruses can be produced both in vivo and in vitro as highly
robust and monodisperse particles. As a result, beside
biomedical applications, understanding virus assembly
can also have novel promising applications in nanofabri-
cation. At the basic level, viruses consist of viral genomes
(RNA or DNA molecules) packaged inside a protective
protein shell (viral capsid). The structures of viral capsids
for most viruses are well understood from high-resolution
experiments using cryoelectron microscopy or x-ray analy-
sis [1,2], as well as theoretical studies [3,4]. Single-
stranded RNA (ssRNA) viruses also package their genome
spontaneously during assembly. Several theoretical studies
have demonstrated that the interaction between capsid
proteins and RNA nucleotide basis plays an important
role in the RNA packaging process, both energetically
and kinetically [5–9]. However, unlike the structural study
of viral capsid, there is still a lack of general understanding
of structure of packaged RNA. In Refs. [6,8,9], different
models of RNA packaging inside viruses were studied.
However, all these works treat RNA molecules as linear
flexible polymers. In this Letter, we want to address the
question of how RNA molecules are arranged inside a
spherical virus, explicitly taking into account the branching
degree of freedom of RNA secondary structure.

We focus on a particular class of ssRNA viruses where
the interaction between capsid proteins and RNA mole-
cules is nonspecific and occurs dominantly at the inner
surface of the capsid. This is the case for viruses where
basic amino acids are located on the surface and electro-
static interaction is strongly screened in the bulk solution
(examples of such viruses are Bacteriophage MS2, Q Beta,
Dengue, Immature Yellow Fever, . . . generally viruses be-
longing to groups B and C mentioned in Ref. [9]). (In some
viruses such as Pariacoto virus [10], the viral capsid forces
some fraction of RNA molecules to adopt it dodecahedron
structure. In that case, the theory presented below should

be applied to the free fraction of these RNAs.) Even though
RNA-capsid interaction only occurs at the surface, RNA
radial concentration profiles and the amount of RNA pack-
aged inside a virus can be dictated by the strength of this
interaction. The main result of this Letter is that there are
two different profiles for the radial RNA nucleotide con-
centration. For small capsid attraction, the RNA concen-
tration is maximum at the center of the capsid. A
representative virus (the Dengue virus) for this profile is
shown in Fig. 1(a). For larger capsid attraction, the RNA
concentration is maximum at a distance close to (but al-
ways smaller than) the inner capsid radius. A representa-
tive virus (the Bacteriophage MS2) for this profile is shown
in Fig. 1(b). For the later case, the RNA molecules form a
dense layer at the inner capsid surface. The thickness of
this layer varies very slowly (logarithmic) with the capsid
radius. As a result, the amount of RNA packaged inside
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FIG. 1 (color online). Two different profiles for RNA mono-
mer concentration inside spherical viruses. Points are experi-
mental data and solid lines are theoretical fit. (a) Profile II,
Eq. (9), fitted to RNA concentration of Dengue virus obtained
from cryoelectron microscopy experiment [16]. (b) Profile III,
Eq. (11), fitted to RNA concentration of Bacteriophage MS2

obtained from small angle neutron scattering experiment [17].
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such viruses is proportional to the capsid area (or the
number of capsid proteins) instead of its volume.

It is well known that ssRNA molecules fold on them-
selves due to base-pairing interaction between their nu-
cleotides. Because nucleotide sequence of ssRNA
molecules is not perfect for such pairing, their secondary
structure is highly nonlinear. To the first approximation,
RNA molecules are considered to be highly flexible branch
polymers which can fluctuate freely over all possible
branching configurations. Different branching configura-
tions are described in the schematic way shown in Fig. 2,
characterized by fugacities for ‘‘bifunctional’’ units (linear
sequences), ‘‘trifunctional units’’ (branching points) and
‘‘end points’’ (stem-loops or hairpins). We assume good
solvent condition with repulsive interactions between the
different units (with no ‘‘tertiary’’ pairing). Using a mean-
field approximation [11] to a field theory for solutions of
branching polymers of this type [12], one can write down
an expression for the free energy density of RNA solution
W�Q�~r�� as

 

W�Q�~r��
m

�
�
2
Q� ~r�2 �

w
6
Q� ~r�3 �muQ� ~r�4 � hQ�~r�;

(1)

where �, w, h, and m are the fugacity of the monomers,
branch points, the end points, and the whole polymers,
respectively. The coefficient u is proportional to the
second-order virial coefficient for monomer-monomer in-
teraction (since RNA molecules are assumed to be in good
solvent, u is positive). Q� ~r� is the order parameter of the
field theory and is proportional to the concentration of
end points. Note that if one sets w � 0 (the branching
degree of freedom is suppressed), Eq. (1) recovers the
well-known expression for the free energy density of a
solution of linear polymers [13]. Based on this mean-field
expression, it is suggested that RNA are prone to a surface
condensation which is different from that of linear polymer
[11]. In this Letter, we will use the mean-field expression,
Eq. (1), to study how RNA molecules are packaged inside a
virus. For simplicity, we model the viral capsid as a hollow
sphere with inner radius R. We also assume that RNA

molecules are radially distributed inside the capsid so
that Q�~r� � Q�r� where r is the radial distance from the
center of viral capsid. As a result, the excess free energy of
the RNA molecules packaged inside a capsid can be writ-
ten as

 HMF � Hs �
Z R

0
4�r2dr

�
m
2

�
dQ
dr

�
2
� �W

�
; (2)

with �W�Q�r�� � W�Q�r�� �W�Qbulk�. The first term in
Eq. (2) denotes the interaction energy of the capsid pro-
teins with the RNA molecules. Assuming this interaction
occurs only at the inner capsid surface,Hs can be written as
the sum of contributions from monomers and end-point
adsorptions:

 Hs � 4�R2m���1Q�R� � �2Q�R�2=2�; (3)

where �1;2 are the strengths of the adsorption.
Because of the cubic term proportional to w in Eq. (1),

for small positive �, the free energy density W�Q� has two
minima, QD and QC, corresponding to, respectively, the
mean-field order parameter of a dilute bulk RNA solution
and that of a condensed bulk RNA solution. A first-order
condensation transition takes place when W�QD� �
W�QC�. We will always assume RNA solution lies at this
coexistence regime so that both the dilute and dense phases
of RNA solution are close in energy. Therefore, we set bulk
value Qbulk � QD. The equilibrium RNA concentration
profile corresponds to the profile Q�r� that minimizes the
Hamiltonian equation (2). Setting the functional derivative
�HMF=�Q to zero, we obtain the Euler-Lagrangian equa-
tion
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and a boundary condition at the inner capsid surface:

 

dQ
dr

��������r�R
�
H0s�Q�R��

4�R2m
� ��1 � �2Q�R�: (5)

To proceed further, we approximate �W using the
double parabolic potential form [14]:

 �W�Q� �

(
1
2m�

2
D�Q�QD�

2 for Q<Qm;
1
2m�

2
C�Q�QC�

2 for Q>Qm;
(6)

where Qm � ��DQD � �CQC�=��D � �C� is the point
where the two parabolas cross each other forming a cusp.
The two coefficients �2

D, �2
C are the stiffness of the free

energy density of RNA solution near the two minima. They
are proportional to the corresponding correlation lengths of
the two phases. In general, this double parabolic potential
form for the free energy density breaks down near the
critical temperature where the first-order transition be-
comes second order, or when the fugacity of
branch points, w, goes to 0 (the branching degree of free-
dom is suppressed and RNA molecules behave as a linear
polymer). However, it was shown [11] that the mean-field

FIG. 2. Schematic representation of the secondary structure of
a single-stranded RNA molecule as a collection of linear sec-
tions, branch points, and end points. The molecule can freely
fluctuate between different branching configurations.
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expression, Eq. (1), breaks down before this limit is ap-
proached. If one stays within the limit of mean-field theory,
the double parabola approximation is a reasonable approxi-
mation. We will come back to its limitation in later dis-
cussion. With this approximate form of �W, Eq. (4)
becomes linear and easy to solve. The general solution is
a linear combination of exp�	�D;Cr�=r. There are three
possible concentration profiles for the RNA molecules.

Profile I.—If for all r, Q�r�<Qm, then the solution is

 Q�r� � �C10 sinh��Dr�=��Dr� �QD; (7)

where

 C10 �
��1 � �2QD�R

cosh��DR� � ��2R� 1� sinh��DR�=��DR�
: (8)

Because the RNA-capsid interaction is attractive, �1;2 > 0.
This means that for all r, the end point (and monomer)
concentration is always smaller than the bulk value,
Q�r�<QD � Qbulk. This is a nonphysical situation, and
we discard this solution from later consideration.

Profile II.—The second possibility is the case that for all
r, Q>Qm. Accordingly, the solution is

 Q�r� � �C20 sinh��Cr�=��Cr� �QC; (9)

where

 C20 �
��1 � �2QC�R

cosh��CR� � ��2R� 1� sinh��CR�=��CR�
: (10)

This solution is a monotonously decreasing function of r
and the RNA concentration is maximum at the center of the
capsid. Because of the requirement that Q�R� must be
greater than Qm, this profile is possible only for very
weak adsorption [in practice, �CR
 1, this requirement
means ��1=QC � �2�=�D < 1]. As a result, RNA mono-
mers want to concentrate at the center of the capsid to gain
their configurational entropy [minimizing the gradient
term in Eq. (2)].

Profile III.—The third possibility is that Q�r� passes
through Qm at some distant r � r0 (0< r0 <R) such
that Q�r � r0� � Qm. We can interpret r0 as the boundary
between the dilute and the condensed phases of RNA
molecules inside the capsid. Requiring the density profile
Q�r� and its derivative Q0�r� to be continuous at r0, we get

 Q�r� �
�
�Q0�QD�

sinh��Dr�
�Dr

�QD for r< r0;

C3�
exp��Cr�
�Cr

�C3�
exp���Cr�

�Cr
�QC for r0 <r<R;

(11)

where

 C3	 � � exp����C � �D�r0��Q0 �QD���C=�D � 1�=4

	 exp����C � �D�r0��Q0 �QD���C=�D � 1�=4

� exp���Cr0��QC �QD���Cr0 	 1�=2;

 Q0 � Q�0� � QD �
�QC �QD��C
�C � �D

�Dr0

sinh��Dr0�
: (12)

The boundary condition Eq. (5) leads to the equation for
r0:
 �

1�
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�
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sinh��Dr0�
� 1�

�D
�C

�
� 0; (13)

where u � exp��C�R� r0��. The parameter

 �s � �1� �D=�C���1 � �2QC�=�QC �QD�; (14)

is proportional to the strength of RNA adsorption at the
inner capsid surface and has a dimension of inverse length.
Obtaining an analytical solution for r0 from Eq. (13) is a
highly nontrivial task and numerical solution is generally
needed. Nevertheless, we can understand important quali-
tative features of the RNA concentration profile by solving
for r0 in the limit of strong capsid-RNA adsorption
(�sR
 1) and small correlation length of RNA concen-
trated phase (�CR
 1). In this limit, the first two terms in
Eq. (13) are the two most dominant ones. Balancing them,
we get u ’ 2�sR, or

 r0 ’ R� �
�1
C ln�2�sR�: (15)

As we mentioned above, r0 can be considered as the
boundary between a dense RNA phase near the capsid
and a dilute RNA phase at the capsid center. The quantity
d � R� r0, therefore, can be considered the thickness of
this dense RNA layer. According to Eq. (15), d / lnR
which is parametrically smaller than the capsid radius, R
[15]. In other words, our RNA concentration profile shows
a dense RNA layer condensed on the inner capsid with
thickness which varies very slowly with its radius.
Consequently, the amount of RNA packaged inside the
virus is proportional to the capsid area (or the number of
capsid proteins) instead of its volume. In recent works
[6,9], a similar dependence is observed when positively
charged amino acids of capsid proteins are located in their
long flexible peptide arms. In their works, the thickness of
RNA molecules (treated as linear polymers) layer depends
on the length of these arms. On the other hand, for the class
of viruses we study in this Letter where the basic amino
acids are located at the inner capsid surface instead of
peptide arms, the competition between the branching de-
gree of freedom of the secondary structure of RNA mole-
cules and the attraction of capsid proteins is responsible for
the layer structure and the thickness scales as lnR. Another
interesting feature of RNA concentration profile III is the
fact that it does not peak at the inner capsid radius R but at
some smaller radius. This is the direct consequence of the
boundary condition, Eq. (5), which forces the RNA con-
centration to decrease in the vicinity of the capsid.
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In Fig. 1, we plot examples of the two profiles, Eqs. (9)
and (11), fitted to the experimental data for two viruses, the
Dengue virus and Bacteriophage MS2. The data for the
Dengue virus was obtained using cryoelectron microscopy
[16]. The data for Bacteriophage MS2 was obtained using
small angle neutron scattering measurements [17]. Both
viruses have most of their basic amino acids located on the
surface of inner capsid, therefore our model capsid can be
used. Both theoretical profiles show reasonable agreement
with experiment results.

So far, when solving the Euler-Lagrange equation for
RNA density profile, we assumeQ�r� crosses the value Qm
at most one time. Certainly, there is a possibility that Q�r�
can cross Qm multiple times as r increases from zero to R.
This results in an oscillating RNA concentration profile.
One could easily extend our calculation presented in this
Letter to such a case by adding more piecewise solution to
the ansatz, Eq. (11), and requiringQ�r� and its derivative to
be continuous at the crossing points. Such extension could
offer insights, for example, into the oscillating radial pro-
file of RNA molecules packaged inside Turnip Yellow
Mosaic Virus [17]. Nevertheless, these cases are relatively
uncommon and the calculations would go beyond the
scope of this Letter. We will address these cases in more
detail in future study.

Naturally, one wants to know which RNA concentration
profile is the most thermodynamically stable. To answer
this question, one needs to substitute these profiles
[Eqs. (9) and (11)] into the original expression for the
capsid excess free energy, Eq. (2), and compare the result-
ing energies. This is a tedious task. Numerically, it is found
that for small adsorption strength of viral capsid, the
second profile would be thermodynamically stable and
RNA concentration is maximum at the capsid center. For
stronger surface adsorption, the third profile is lower in
energy. In this case, RNA molecules form a dense layer at
the capsid and the RNA concentration is maximum at a
finite radius smaller than R.

It is known [11] that the mean-field theory, Eq. (2),
breaks down when the critical point is approached and
the first-order transition between dilute and condensed
phases of RNA solution becomes of second order. Once
this happens, a physical picture similar to that of a solution
of branched polymer with frozen branching arrangement
emerges [18]. In this case, the RNA molecules become
unscreened and nonoverlapped. For viruses with several
packaged RNA molecules, each of them would adsorb
independently onto the capsid and the layer thickness of
each molecule scales as a square root of its molecular
weight. Conversely, if such separation between constituent
viral genomes is observed, it would signal the breakdown
of mean-field theory.

In conclusion, in this Letter we found two different
nucleotide concentration profiles of viral RNA molecules
packaged inside spherical viruses. The theory applies to a
class of viruses where capsid-RNA interaction occurs at

the capsid surface only. For small interaction strength, the
RNA monomer concentration is maximized at the center of
the capsid to maximize their configurational entropy. For
higher interaction strength, RNA forms a dense layer near
the capsid surface. The thickness of this layer is a slowly
varying (logarithmic) function of the inner capsid radius.
In this case, the amount of packaged RNA would be
proportional to capsid area (or number of capsid proteins)
instead of its volume. The profiles describe reasonably well
the experimental profiles for various viruses.
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