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Bifurcations to Diversify Geometrical Patterns of Shear Bands on Granular Material
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The mechanism to diversify geometrical patterns on granular material was elucidated using a group-
theoretic image analysis of patterned shear bands, with associated numerical bifurcation analysis. Pattern
formation of granular materials took the course of the evolution of a diamondlike diffuse bifurcation
breaking uniformity, followed by further bifurcation, mode jumping, and the formation and disappearance
of shear bands through localization. A chaotic explosive increase of possible postbifurcation states was
emphasized as a mechanism to diversify geometrical patterns.
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Granular material displays diverse geometrical patterns
[1-4]. In the shearing test of granular material, it has been
a long standing paradox that “‘the patterns of shear bands
[5] are so diversified that every test appears to be unique,
even when conducted under identical conditions.” The
surprising aspect underscored in this case is that experi-
mental efforts to produce homogeneous granular material
specimens encounter unpredictable responses, which are
designated later as the chaotic explosive increase of pos-
sible bifurcation states.

Since these specimens are fabricated to be uniform, it is
logical to refer to a theoretical model of symmetry break-
ing from a uniform state. A group O(2) X O(2) [6] is used
to express the symmetry of a rectangular cross section of a
cubic or rectangular parallelepiped domain; diamond and
oblique stripe patterns are produced through bifurcation of
a system with this symmetry [7].

In fact, diamond and oblique stripe patterns have been
observed in a sandbox experiment [8], which concurs with
the theoretical prediction. Nevertheless, the mechanism of
the formation of the complex geometrical pattern in Fig. 1,
which is not periodic at the boundaries remains to be
elucidated. The specimen starts from a homogeneous state
but ends up with a nonhomogeneous one; an underlying
link exists between these two states. One may raise the
criticism that granular material specimens are not uniform
because of initial heterogeneities that govern the orienta-
tion and spatial distribution of shear bands [9]. However,
this criticism cannot answer a question: Can heterogeneity
produce patterned shear bands?

To explain the mechanism of pattern formation in a
granular material, the authors propose a hypothesis: “bi-
furcation with a diamondlike diffuse mode with spatially
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distributed continuous deformation occurs and breaks
uniformity prior to formation of shear bands through lo-
calization.” In this work, experimental, theoretical, and
numerical results are set forth to test that hypothesis.

Image-analysis procedure.—In order to detect bifurca-
tion of a uniform granular material specimen, a group-
theoretic image-analysis procedure [10] was used. The
scalar field of incremental strain invariant Ae(x, y) in a
rectangular domain {(x,y) |0 =x=1,0=y =1/} was
expanded into a double Fourier series

FIG. 1 (color). A dry dense sand cubic specimen (100 X
100 X 100 mm?) that was sheared by a triaxial test apparatus
that can control three principal stresses independently. The
specimen was surrounded by six rigid planes, and was deformed
into a right-angled prism with confining pressure of 300 kPa.
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Ae = Z Z (A, n, sin(2mn,x/1,) cos(2mn,y/1,)

n,=0n,=0

+ B, , sin(2wn,x/l,)sinQ2Qwn,y/l,)

+ C, n, cos(2mn,x/1,) cos(2mn,y/l,)

+ D, , cos(2mnx/l,)sinQQmn,y/l1,)]. (1)

We specifically address the wave number (n,, n,) (n,,
ny, = 0,1,2,...), which corresponds to a possible bifurca-
tion mode. For this wave number, Eq. (1) can engender
diamond and oblique stripe patterns

Cy cos(2mn,x/l, + a)cos(2wn,y/l, + B): diamond

C;cos[2m(n,x/l, = n,y/l,) + a]: oblique stripe

for constants C, Cp, —m=a<m,and —7 = B < .
Experiment. —We revive the experiment [11], in which
characteristic shear band pattern was observed. A fine
angular, siliceous sand (Hostun RF) specimen (164.0 X
173.0 X 35.4 mm?) was tested by the plane strain com-
pression apparatus. Deformation patterns on the rectangu-
lar cross section (164.0 X 173.0 mm?) with the initial
aspect ratio of 0.95 are investigated. The false relief stereo-
photogrammetry (FRS) [12] method was used to digitize
the displacement fields of the cross section deforming
under load. Photographs taken were numbered 1-9.

Original image
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The progression of localization of incremental strain
fields between two neighboring photographs was obtained
(Fig. 2, top row). The specimen displayed the orientation of
spatially distributed strain localization, which is weak and
obscure. Two parallel oblique shear bands were observed
during increments 3-5. During increments 5-8, some
shear bands diminished gradually in favor of the emer-
gence of two oblique shear bands in different directions.
The shear bands thus formed complex geometrical pat-
terns. Consequently, FRS visualized the strain fields; how-
ever, a bifurcation mode was not detected.

The original incremental fields of the shear strain invari-
ant (Fig. 2, top row) were expanded into the double Fourier
series [cf. Eq. (1)]. The history of the magnitude of the
Fourier coefficient for each wave number was investigated
(Fig. 3); as described previously, each wave number
corresponds to a possible bifurcation mode. Strong magni-
tudes were detected for two wave numbers: (7, ny) =
(3,1) and (2,1). During increments 3-6, the magnitude
for (3,1) increased sharply and was predominant among
all modes. During increments 6—9, the magnitude for (2,1)
increased stably and the modes for (3,1) and (2,1) were the
largest in magnitude. At the final state, no such predomi-
nance was observed.

Histories of the decomposed strain fields for (3,1) and
(2,1) (Fig. 2, second and third rows, respectively) displayed
diamondlike and stripelike patterns, which appear to have
physical necessity. During increments 3—6, the inclination
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FIG. 2 (color).
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Contour views of incremental strain fields: top row, original images; second row, decomposed images for wave

number (3,1); and third row, decomposed images for wave number (2,1). Points with large strain are colored red; those with small
strain are colored blue. The strain stands for the second invariant of the logarithmic deviatoric strain that is nondimensional.
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FIG. 3. History of intensity of decomposed strain fields be-
tween photographed points. Incremental shear strain fields were
expanded into the double Fourier series and classified into
distinct bifurcation modes. The intensity was defined as (Aﬁvnv +

B, +C3, + D3, )" [cf. Eq. (D]

of shear bands was 6, = 68° and is close to 023’1) =T71° of
localization patterns of (3,1); during increments 69, the
inclination of shear bands was 6, = 64° and is close to

022’1) = 61° of localization patterns of (2,1). The change of
inclination of shear bands, accordingly, can be explained as
the change of the wave number of the predominant modes.

Based on this observation, we introduce an interpreta-
tion of the experimental behavior. During increments 23,
a diffuse-mode bifurcation of the wave number (3,1) ema-
nated, almost hidden, behind the predominant uniform
compressive deformation [13]. Thereafter, the mode for
(3,1) grew sharply to form diamond-pattern-like possible
locations of localization. During increments 3—4, among
these possible locations of localization, loading progressed
in some locations and developed into shear bands, whereas
unloading progressed in other locations. The shift of the
predominant wave number from (3,1) to (2,1) rendered
geometrical patterns complex; this shift is ascribed to
recursive bifurcation and/or mode jumping [14]. The va-
lidity of this interpretation will be assessed in the sequel,
based on numerical simulation.

Numerical simulation. —Elastoplastic finite-deformation
bifurcation analysis [15] was conducted on the finite ele-
ment model of a rectangular uniform domain with the
initial aspect ratio of 0.95. Figure 4 shows computed loci
of equilibria. From the fundamental equilibrium path
(shown by thick solid line), associated with homogeneous
deformation, four bifurcated equilibrium paths (thin solid
lines) branched at four closely located bifurcation points
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FIG. 4. Equilibrium paths of the finite element model of a
rectangular uniform domain that is divided into 32 X 32 rectan-
gular eight-nodes quadratic elements (3201 nodes). The
Drucker—Prager model [18] was used with material properties:
elastic bulk modulus, 12.50 MPa; elastic shear modulus,
5.77 MPa; critical stress ratio, 0.943; dilatancy factor, 0.299;
internal friction angle, 35.0°; and dilatancy angle, 10.0°.

[i]-[iv] (O). These bifurcated paths followed fairly well
the experimental curve (dashed line).

As shown by the postbifurcation progress of strains on
the bifurcated paths [Fig. 5(a) for (i) and (ii)], the bifurca-
tion modes at the bifurcation points were spatially periodic,
diamondlike, diffuse modes with different but nearly
equivalent wave numbers. They generated spatially peri-
odic strain-localized locations. Most of these locations
underwent unloading; only a few of them underwent load-
ing to engender shear bands with diverse and complex
geometrical patterns.

Multiple possible states of equilibrium due to bifurca-
tions are visible. Three different solutions [Fig. 5(b)] were
oriented from the same bifurcation point [iii] with slightly
different numerical conditions, such as the convergence
criterion in numerical iterations and increments of equilib-
rium paths. The numerical equilibrium paths displayed
zigzag up and down [16], which indicates possible further
bifurcation and/or mode jumping. Such multiple equilibria
should not be treated as a numerical problem, but should be
treated as an essential difficulty of the problem in question.
Because of the spatial periodicity of localized locations,
several possible locations have a similar likelihood to
develop into shear bands. The locations that develop into
shear bands change case by case, possibly because of initial
inhomogeneities in experiments. Therefore, the locations
are accidental and unpredictable. This mechanism to di-
versify shear band patterns is designated as the ‘“‘chaotic
explosive increase of possible postbifurcation states.” It
resolves a paradox that has long puzzled the authors: “The
patterns of shear bands are so diversified and geometrical
and every test appears to be unique.” The surprising aspect
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FIG. 5 (color). (a) Progress of the distribution of shear strains
on bifurcated paths (i) and (ii). (b) Three different possible
postbifurcation states emerging from the bifurcation point [iii].

is that experimental efforts to make specimens homoge-
neous produce chaotic, unpredictable responses.
Diffuse-mode bifurcation, recursive bifurcation, and/or
mode jumping, followed by localization into shear bands,
is the underlying chaotic mechanism forming geometrical
patterns on granular material. It ends a long controversy
related to the initial bifurcation that breaks uniformity:
shear band mode bifurcation that spontaneously engenders
a shear band(s) [17], or diffuse-mode bifurcation that
causes distributed deformation initially and engenders
shear bands later. Although shear band formation has here-
tofore attracted the most attention, diffuse-mode bifurca-
tion is a catalyst that breaks uniformity, and via recursive
bifurcation and/or mode jumping, engenders diversified
shearing patterns. Future studies are expected to encode
the mechanism of diffuse-mode bifurcation into the frame-
work of the shear band analysis of granular material to
overcome the difficulty of the chaotic explosive increase of
possible postbifurcation states, then to elucidate the me-

chanical behavior of granular material.
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