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We report nanoscale scanned probe ferromagnetic resonance force microscopy (FMRFM) imaging of
individual ferromagnetic microstructures. This reveals the mechanism for high spatial resolution in
FMRFM imaging: the strongly inhomogeneous local magnetic field of the cantilever mounted micro-
magnetic probe magnet used in FMRFM enables selective, local excitation of ferromagnetic resonance
(FMR). This approach, demonstrated here in individual permalloy disks, is straightforwardly extended to
excitation of localized FMR modes, and hence imaging in extended films.
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The demands of high density information storage and
magnetoelectronics have fueled interest in understanding
the properties of nanoscale magnets and have highlighted
the need for tools capable of subsurface, high spatial
resolution study and imaging of ferromagnets. Ferro-
magnetic resonance (FMR) [1] is a powerful technique
for obtaining detailed information regarding the magnetic
properties of microscale ferromagnetic systems. However,
limited by its sensitivity, FMR can only be applied to large
collections of nanoferromagnets. Magnetic resonance
force microscopy (MRFM) detection of FMR (FMRFM)
has been demonstrated in micron-scale magnets [2—5], and
with single electron spin sensitivity [6], MRFM can detect
signals from the smallest magnets.

In addition to high sensitivity, microscopic study re-
quires a mechanism for controllably defining the volume
to be studied, but so far, no mechanism for so confining the
FMR excitation is known. Magnetic resonance imaging
(MRI), very powerful for paramagnetic systems, defines
the resonant volume by means of an applied magnetic field
gradient. This paradigm assumes weakly interacting spins
for which the resonance frequency is a local function of
applied field, independent of the state of neighboring
spins—a condition not met in a ferromagnet.

Here we demonstrate that the localized magnetic field of
the micromagnetic scanned probe tip employed for
FMRFM can define the detected volume in a microscopic
FMRFM experiment. We present images of individual
micron-scale dots that reveal the mechanism by which an
intense, localized magnetic field locally alters the FMR
mode frequency. This provides a mechanism for spatially
defining the volume in which an FMR mode is excited, and
thus for high resolution imaging. This further means that
the spatial variation of the FMR mode is encoded into a
position-dependent spectral response, much as in MRL
This allows mode imaging with a spatial resolution set
by the ratio of the spectral linewidth to the (potentially
quite large) magnetic field gradient.
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FMRFM was performed at 7 = 4.2 K on a square array
of 50 nm thick, 2 um diameter permalloy disks with
2.2 um center to center spacing in a magnetic field H,,,
adequate to saturate the magnetization (excitation fre-
quency ~8 GHz) applied perpendicular to the plane of
the disks. The FMR signal is detected by a compliant
cantilever with a high coercivity (=1.5 T) SmCo micro-
magnetic probe tip fabricated by focused ion beam micro-
machining (moment 1.4 X 107! J/T). The FMR force
signal is generated by amplitude modulation of the
microwave field at the cantilever resonance frequency
(=13 kHz); see Refs. [3,7,8] for details. FMR spectra are
recorded by sweeping the external magnetic field H,,, at
constant tip height and lateral position; position-dependent
spectra are recorded as the tip position is scanned in either
one [Fig. 2(a)] or two lateral dimensions [Fig. 2(b)], again
at constant height.

As a consequence of the strong interactions between
spins in a ferromagnet, resonant absorption of energy
from the microwave magnetic field excites collective
modes. In confined samples the allowed wave vectors of
these magnetostatic modes are set by the sample dimen-
sions (the mode amplitude is typically assumed to vanish
at the boundary of the ferromagnet); these have been
well studied in patterned magnetic films [9-11]. The
spatial profile of m,, in a thin ferromagnetic disk perpen-
dicularly magnetized by a uniform external magnetic field
H. is well described by the zeroth order Bessel
function [12]: "m,, = uoJo(k,p), where p is the distance
from the center of the dot, a is the dot radius, «,, is the nth
zero of Jy: Jo(a,) = 0and k,, = «,,/a is the effective wave
vector of the nth mode and . is the amplitude of the FMR
mode.

A typical FMRFM spectrum recorded over the center of
the disk is shown in Fig. 1. As the probe magnet is highly
coercive, we record FMR spectra for both relative orienta-
tions of the probe magnetic moment m relative to H,,,:
parallel [Fig. 1(a)] and antiparallel [Fig. 1(b)].
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FIG. 1 (color online). FMRFM spectra of an array of 2 um
diameter permalloy dots acquired for two relative orientations of
the probe magnet magnetic moment m relative to the external
magnetic field H.,,: parallel (a) and antiparallel (b). The first
order TFR modes of the dots close to the micromagnetic probe
are indicated as peaks 2 and 3, and the first and the second order
ZFR magnetostatic modes are indicated (peak 1 and 4, respec-
tively); these arise from dots far from the probe tip (tip-sample
separation 200 nm). The spectra were acquired with the probe
magnet located directly over the center of one of the dots as
shown in the inset which also schematically indicates the dipolar
gradient pattern of the probe magnet.

The spectra exhibit both positive and negative peaks.
While the resonance fields of the negative-going peaks
(labeled 1 and 4) are independent of the orientation of
H,, relative to m, the resonance fields of the positive
going peaks (2 and 3) are not. The negative peaks originate
from dots far to the side of the tip where its localized
magnetic field Hy, is so small it does not affect the
mode; peak 1 is the first (n = 1) magnetostatic mode and
4 is the n = 2 mode. Here and below we will refer to a
signal of this kind as a zero tip field resonance (ZFR). The
=~ 400 G spacing between the first and the second ZFR
modes agrees well with theoretical predictions [12].

The positive peaks 2 and 3 originate from the disks in the
immediate vicinity of the tip and their shifts are sensitive to
the orientation of Hy, relative to H,,. If parallel, Hy, and
H,,, will complement each other creating a region of the
stronger field beneath the probe magnet so these disks will
resonate at lower values of H,,, than for the ZFR as shown
in Fig. 1(a). If Hy, and H,, are antiparallel the magnetic
field directly under the probe is weaker so higher values of
H.,, will be required as seen in Fig. 1(b). Henceforth we
will refer to a signal strongly affected by the probe field as
a tip field resonance (TFR).

The relative signs of the ZFR and TFR signals reflect the
dependence of the MRFM force signal F(z) on the gradient
of the probe magnetic field VH,,: F(r) = [, [6M(r, 1) -
V]H,;,(r)dr, where M(r) is that component of the static
sample magnetization varying at the cantilever frequency
in response to the amplitude modulated microwave exci-
tation; the integration is over the entire sample. The dipolar
nature of the probe magnetic field means the sign of the
gradient VHy;, and hence the force due to magnetization
directly below the tip will be opposite to that arising from
magnetization off to the side (Fig. 1, inset).

The influence of the localized tip field on the FMRFM is
evident in images of the spatial variation of these reso-
nance fields with the position of the tip as it is scanned over
the disks. Figure 2(a) shows an example of such an image
acquired by scanning the probe as indicated in Fig. 2(b)
with the probe moment m parallel to H,,;. The plot shows
the behaviors mentioned earlier: the broad black line is the
first order ZFR; it is independent of the probe position as
expected.

The series of light colored arcs in Fig. 2(a) show the tip-
position-dependent FMR modes, i.e., the TFR modes. The
most strongly shifted arcs correspond to the TFR signals
from the disk directly beneath the probe magnet [as shown
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FIG. 2 (color online). (a) Field-position scan: FMR spectra
recorded by sweeping the external magnetic field H., and
spatially scanning the probe along the one-dimensional trajec-
tory indicated by the dash-dotted line across the diagram of the
dots in panel (tip-sample separation is 200 nm). (b) The red
dashed curves in (a) show the analytically calculated dependence
of the TFR resonance field on probe position; these agree
excellently with the experimental data. (c) Spectrum extracted
from image (a) with the tip located over the center of the upper
dot [see panel (b)]. Numerical labels are as in Fig. 1.
(d) Experimental fixed-field (H. = 12.28 kG) 2D image
(4.8 um X 4.8 um) of the spatial variation of the FMRFM
signal.
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in Fig. 2(b)]. The maximum shift of the TFR signal occurs
when the probe magnet is positioned directly over the
center of a disk. The shift decreases as the probe moves
away from the center of the disk, and the TFR mode
eventually merges with the ZFR signal. The less-shifted
TFR signals arise from the rows of disks adjacent to that
immediately under the tip where probe magnetic field is
weaker. The 2D image shown in Fig. 2(d) shows the
variation of the FMR signal intensity as the tip is scanned
at constant applied field H,,,. The small deviation from the
circular symmetry of the signal is due to a lateral compo-
nent of tip magnetization.

The theory of FMR must be augmented to describe
the scanned probe FMR experiments presented here in
which the field of micromagnetic tip is strongly posi-
tion dependent. Since analytical solution of the equations
of motion for arbitrary sample geometry in the presence of
a nonuniform magnetic field H.¢(r) is not generally pos-
sible, we have solved them numerically to gain insight into
this important problem [13]. Using the approach outlined
in Ref. [14], we proceed by linearizing the Landau-Lifshitz
equation and finding the eigenvalues and the eigenstates of
the resulting matrix equation. Further detail is available in
Ref. [13]. When applied to the case of uniform magnetic
field [see Figs. 3(a) and 3(c)], this approach agrees accu-
rately with analytical calculations [12].

Panel (b) in Fig. 3 shows the local mode defined by the
intense localized field of the tip. This local mode provides
the basis for high resolution FMR imaging. To obtain local
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FIG. 3 (color online). Numerically calculated spatial profile of
my for the first order FMR mode excited in a 2 um diameter,
50 nm thick Py disk (47M; = 11 kG, H., = 13 kG) in (a) a
uniform external field and (b) in the presence of the field from a
1 um diameter spherical magnet (47M; = 11.3 kG) located
250 nm above the center of the disk. The magnetic moment of
the probe magnet m is antiparallel to H.,,. The mode is confined
to the region of reduced field beneath the probe. The dotted line
shows the mode amplitude along a line through the center of the
dot; the corresponding magnitude of the total magnetic field H,,
is shown with solid line; the dashed line indicates the resonance
field H,., of the mode. (c) and (d) are the corresponding 2D maps
of my,.

magnetic information with high spatial resolution, the
resonant volume must be confined since the FMR response
is determined collectively by all of the resonant magneti-
zation. The key to generating a local FMR mode confined
to the region beneath the micromagnetic tip is a sufficiently
strong tip field. This enables FMRFM to provide local,
high resolution magnetic characterization of an extended
film, a unique capability for studies in nanomagnetics and
magnetoelectronics.

The numerical results, while precise, call for an intuitive
insight into the mechanism by which the tip field localizes
magnetization dynamics. Consider the Landau-Lifshitz
equation applied to a uniform, perpendicularly magnetized
dot. We focus on the behavior of the small transverse
precessing magnetization and the resulting transverse mag-
netic field: m,, and hy, respectively, and, for clarity, we
ignore damping and omit second order terms (e.g., compo-
nents of h, and m,, perpendicular to the plane):

LM Img(1) X Hege] + M, X by (0)]
v dt

Here v is the gyromagnetic ratio of the electron (y < 0),
H,; is the effective magnetic field incorporating static
external, demagnetizing, anisotropy, exchange and
MRFM probe fields, M, is the saturation magnetization
and w is the microwave excitation frequency.

A monochromatic microwave magnetic field is applied
to excite a resonant mode. In order to be driven by this field
the mode shape must be such that the precession frequency
is constant throughout the sample, everywhere matching
the microwave excitation frequency. We seek oscillatory
solutions for m,(¢) noting that &, is a function of m,. For
clarity we focus on the case where m, = (m, im,) and
h, = —(hy, ih,), but recognize that H.(r) can be spa-
tially nonuniform. In this case the FMR resonance fre-
quency in the Herring-Kittel form [15] is

M.\‘htr(r) —
mtr(r)

— %a)(l‘) = Heff(l') + res(r)‘ (1)

Conventional FMR theory assumes a uniform magnetic
field (H.; independent of r). In this case the second term
on the right-hand side (rhs) of Eq. (1) must be constant
throughout the sample—this requirement determines the
spatial variation of m,(r) and hence h,(r).

For a sufficiently weak magnetic field inhomogeneity
AH (due, e.g., to the micromagnetic tip), the precessing
magnetization m,(r) in the second term on the rhs of
Eq. (1) will adjust to keep the resonant frequency constant
throughout the sample. However, this is only possible for
AH sufficiently weak and delocalized that it can be ac-
commodated by variation of the transverse demagnetizing
field A (r). This field is limited by the finite magnetization
of a particular region of the film (of thickness L and radius
a), so it cannot exceed AH,,,, =~ 27M (L/a). In the case
where AH, for instance due to our tip field, exceeds AH .
within this confined region, an FMR eigenmode localized
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to this region by the tip field will result. Numerical simu-
lations shown in Fig. 3(b) reveal such modes resulting
when a 1 pwm diameter probe magnet magnetized antipar-
allel to the applied field is located 250 nm above the center
of a circular dot producing a region of weaker total mag-
netic field H. at the center of the dot [13].

Since the diameter of the tip is comparable to the 2 um
disks whose images are shown in Fig. 2, it does not
strongly perturb the mode shape. Even so, exact analytical
determination of m(r) is not generally possible. However,
the resulting shift in the resonance frequency can be accu-
rately estimated without knowing the altered mode shape
using a perturbation approach. To first order, the shift in the
resonant frequency due to a spatially varying tip field
H,;p(r) is the average of Hy, over the dot weighted by the
spatial profile of the squared, normalized, oscillating trans-
verse magnetization "m,, of the unperturbed nth magneto-

static mode:
Awn(rl) _ _ thip(r/ - r)[nmtr(r)]zdr (2)

4 JT"my(r)Par

Equation (2) is valid for arbitrarily shaped structures hav-
ing unperturbed eigenmodes "m(r). This approach to
estimating Aw(r’), where r’ is the position of the probe
over the dot, is similar to that introduced [12,16] to im-
prove estimates of the magnetostatic mode frequencies for
cases where the spatial variation of the demagnetizing field
cannot be neglected. Our calculation of Aw(r’) agrees
excellently with the our measured shift, as shown in
Fig. 2(a).

According to Eq. (2) the distribution of the square of the
transverse precessing magnetization ["m,(r')]* can be de-
convolved if we know the tip field distribution Hy,(r),
hence the spatial variation of the FMR frequency enables
direct imaging of FMR modes with resolution defined by
spectral linewidth. For example, the spatial variation of the
mode frequencies arising from two adjacent nanomagnets
will be spatially resolved if they are separated by a distance
greater than the ratio of the spectral linewidth to the lateral
field gradient of the probe tip field. This resembles the
frequency encoding approach used in conventional MRIL
This is in contrast to an earlier method where resolution
was set by tip dimensions because it relied on the spatial
variation of the force acting on cantilever [17].

FMR provides detailed information about the magnetic
properties of a sample; typically the magnetization
throughout the entire sample participates in the resonant
dynamics, and the resulting information reflects the global
average of magnetic properties of the entire sample. To
gain local information, the resonant magnetization must be
confined. We have shown the mechanism by which a local
FMR mode is stabilized by the intense, localized field of a
micromagnetic tip. We have experimentally demonstrated
this theory of the influence of the localized tip field with

imaging experiments performed on 2 um permalloy dots
where the mode is localized by the dot boundary. In this
case the dependence of the resonance field shift on the
location of the micromagnetic tip is the spatial convolution
of the field of the tip with the mode of the dot. This
suggests an approach to imaging localized FMR modes
based on Fourier deconvolution of the spatial variation of
the mode frequency shift. Importantly, spatial resolution is
not limited by the tip size but by the FMR linewidth and the
field gradient of the tip. Line cuts through features shown
in Fig. 2(d) exhibit edges whose 10%—90% widths are
~250 nm wide, consistent with ~70 G FMR linewidths
and lateral gradients of 0.3 G/nm.

The ability to generate a local FMR mode points to a
powerful means of imaging extended, buried ferromagnets.
Based on scanned probe ferromagnetic resonance
(FMRFM), the mode volume is defined by the localized
field of the micromagnetic probe tip. This will enable the
detailed information accessible through FMR measure-
ments to be obtained with high spatial resolution deter-
mined by spectral linewidth and tip field gradient strength.
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