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We introduce a general analytic approach to the study of factorization points and factorized ground
states in quantum cooperative systems. The method allows us to determine rigorously the existence,
location, and exact form of separable ground states in a large variety of, generally nonexactly solvable,
spin models belonging to different universality classes. The theory applies to translationally invariant
systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.
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Introduction.—Quantum engineering and quantum tech-
nology have been developing at a fast pace in recent years.
Quantum devices are being vigorously pursued for appli-
cations ranging from nanosciences to quantum information
and entanglement-enhanced metrology [1]. Despite a large
variety of possible implementations involving different
physical systems, many relevant properties of such devices
can be investigated in a unified setting by appropriate
mappings to quantum spin models [2,3]. Thus, control of
ground state entanglement in quantum spin systems plays
an important role in quantum technology applications [4].
On the other hand, knowledge of exact solutions endowed
with precisely determined properties of separability or
entanglement can be of great relevance in the study of
advanced models of condensed matter and cooperative
systems that are, in general, not exactly solvable.

The occurrence of totally factorized (unentangled)
ground states of quantum many-body systems was first
discovered in the one-dimensional anisotropic Heisen-
berg model with nearest-neighbor interactions [5]. This
result was later rederived and extended to two dimensions
by using quantum Monte Carlo numerical methods [6].
Complex quantum systems exhibiting cooperative behav-
iors, whose ground states are typically entangled [7], may
thus admit, for some nontrivial values of the Hamiltonian
parameters, a ground state which is completely separable.
The phenomenon of ground state factorization appears to
be associated with the presence of an ‘‘entanglement phase
transition’’ with no classical counterpart [8]; furthermore,
for the purposes of quantum engineering applications that
employ distributed entanglement in order to manipulate
and transfer information [9], factorization points need to be
exactly identified and avoided to guarantee the reliable
implementation of quantum devices. Finally, for models
not admitting exact general solutions, achieving knowl-
edge of the exact ground state, even if only for the re-
stricted nontrivial set of parameters associated to
factorization, would allow us (i) to prove the existence of
an ordered phase and characterize it and (ii) to build varia-
tional or perturbative approximations around the exact

factorized solution that may then be used as test bench-
marks for the validity and the precision of numerical
algorithms and simulations. Unfortunately, to date, it has
been extremely hard to go beyond the pioneering result of
Kurmann, Thomas, and Müller [5] despite the fact that, to
prove total factorization, it would suffice to show the
vanishing of the von Neumann entropy of entanglement
or of the linear entropy (tangle) [10]. The difficulty resides
in the fact that, with few special exceptions, explicit ana-
lytic expressions for these measures of entanglement can-
not be obtained. Hence, the only possibility to gain insight
on factorization in systems of increasing complexity has
relied so far on heuristic or numerical approaches.

In this Letter, we introduce a general analytic method
that allows us to determine exactly the existence of factor-
ized ground states and to characterize their properties in
quantum spin models defined on regular lattices, in any
spatial dimension, and with spin-spin interactions of arbi-
trary range. In correspondence to rigorously established
ground state factorizability, the method also allows us to
determine novel sets of exact solutions in generally non-
exactly solvable models. Previous particular findings for
models with short range interactions [5,6,11] are rigor-
ously rederived and extended within a unified framework
inspired by concepts of quantum information science. The
method is built on a formalism of single-spin, or single-
qubit, unitary operations (SQUOs) and associated entan-
glement excitation energies (EXEs), previously introduced
for the characterization and quantification of entanglement
in systems of quantum information [12,13]. The novel
techniques exploit the fundamental property enjoyed by
the EXEs of vanishing if and only if a pure state is fully
factorized [13]. For any given Hamiltonian, the strategy to
the understanding of factorization is first to assume as a
working point a phase endowed with some kind of mag-
netic order. Next, by imposing the vanishing of the EXE
and of the linear entropy, one derives a closed set of
conditions whose solutions determine uniquely the occur-
rence (or the nonoccurrence) of factorization points at
which a quantum ground state is completely disentangled.
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The method.—To fix ideas and notations, let us consider
general, translationally invariant, exchange Hamiltonians
for spin-1=2 systems on d-dimensional regular lattices,
with spin-spin interactions of arbitrary range and arbitrary
anisotropic couplings. This class of Hamiltonians encom-
passes a very large set of models describing different spin
systems and spanning several universality classes such as,
among others, the Ising, XY, Heisenberg, and XYZ sym-
metries. The general Hamiltonian can be written in the
form

 H �
1

2

X
i;l

JrxSxi S
x
l � J

r
yS

y
i S

y
l � J

r
zS

z
iS
z
l � h

X
i

Szi : (1)

Here i (and similarly l) is a d-dimensional index vector
identifying a site in the lattice, S�i (� � x; y; z) stands for
the spin-1=2 operator on site i, h is an external field
directed along the z direction, r � ji� lj is the distance
between two lattice sites, and Jr� is the spin-spin coupling
along the � direction; translational invariance implies that
it depends only on the distance r between the spins.
Without loss of generality, one can impose jJrxj �
jJryj; jJrzj 8 r. This condition guarantees that, at a particu-
lar value of the external field h � hc, the system undergoes
a quantum phase transition at zero temperature: For h <
hc, the system is in an ordered phase which may, or may
not, be associated to a nonvanishing order parameter cor-
responding to the ground state expectation of Sxk. The order
parameter Mx � hSxki in the case of ferromagnetic order,
and Mx � ��1�lihSxi i in the antiferromagnetic case, where
li �

Pd
n�1 in, and in is the nth component of i. In the

following, we specialize to the antiferromagnetic case;
trivial modifications are needed in the ferromagnetic case.

SQUOs are unitary transformations Uk that leave all
spins unaffected but for an arbitrarily chosen one, say, at
site k, on which the SQUOs act as unitary, Hermitian, and
traceless operators [12]. One can prove that there exists an
element of this class, the extremal SQUO (E-SQUO) �Uk,
such that the squared Euclidean distance between a state
j�i and its image �Ukj�i under the action of the E-SQUO
coincides with the linear entropy (tangle) � � 2�1�

Tr��2
k��, where �k denotes the reduced state of spin k

[10,12]. This entanglement monotone quantifies the entan-
glement existing in state j�i between the single-spin block
k and the remainder of the system. If j�i is the ground state
of a quantum mechanical Hamiltonian H, the E-SQUO is
uniquely associated to the aforementioned EXE, defined as
�E � h �UkH �Uki � hHi. A crucial property of the EXE is
that if H is translationally invariant and �H;Uk� � 0 for all
SQUOs Uk, then the ground state is completely factorized
if and only if �E � 0 [13]. The generic spin-1=2 models
Eq. (1), as well as many others, satisfy this condition. The
above theorem can then be applied to identify the occur-
rence of factorization points. By definition, the E-SQUO
can be written as �Uk �

N
i�k1i 	Ok, where [12]

 O
k � Szk cos�
 Sxk sin�; (2)

and the 
 sign discriminates the two sublattices, corre-
sponding to the sign of the staggered magnetization hSxki.

Let us assume that H [Eq. (1)] admits a factorized
ground state. By applying the E-SQUO [Eq. (2)] to the
ground state, exploiting the fact that for fully factorized
states all correlations separate in products of single-site
expectations, and imposing the condition �E � 0, one has
that factorization requires the simultaneous occurrence of

 tan� � Mx=Mz; tan� � J xMx=�J zMz � hf�; (3)

where hf is the factorizing field, i.e., the value of the
external field for which ground state factorization occurs.
The quantities J � are the net interactions reflecting the
type of magnetic order that exists along different axes. In
the antiferromagnetic case, J x �

P
1
r�1��1�rZrJ

r
x and

J z �
P
1
r�1 ZrJ

r
z , where Zr denotes the number of sites

placed at distance r from a given spin. Conditions (3) and
the vanishing of the tangle � � 1� 4�M2

x �M
2
z � yield a

closed expression for the phase � as a function of the
Hamiltonian parameters and of hf:

 cos� � 2hf=�J z � J x�: (4)

Equation (4) determines, independently of the magnetiza-
tions, the form of the candidate factorized ground state
j�fi [14]:

 j�fi �
N
i
j �2iij 

�
2i�1i; (5)

where j 
k i are the eigenvectors of O
k with eigenvalue
1=2.

Thus far, we have determined the general expression that
a factorized ground state must assume. We are left to
establish the conditions for its existence, i.e., the condi-
tions under which a state of the form Eq. (5) is indeed the
eigenstate of H [Eq. (1)] with the lowest energy. For each
pair of spins i and j, we introduce the pair Hamiltonian

 Hij � JrxSxi S
x
j � J

r
yS

y
i S

y
j � J

r
zS

z
iS
z
j � h

r
f�S

z
i � S

z
j�; (6)

where hrf is defined by the relation 2hrf � cos��Jrz �
��1�rJrx�. It is immediate to verify that, by resumming
the operators Hij over all spin pairs, one reobtains

Eq. (1), with h � hf. Hence, proving that j�fi is a simul-
taneous eigenstate of all pair HamiltoniansHij implies that

it is an eigenstate of the total Hamiltonian H as well.
Inserting the expression of j�fi in Eq. (6) yields a set of
conditions that must be satisfied to ensure that j�fi is an
eigenstate of every pair Hamiltonian Hij:

 � Jry � cos2�Jrx � ��1�rsin2�Jrz � 0 8 r; (7)

where � is given by Eq. (4). By summing over r, term by
term, all of the relations in Eq. (7), and solving for hf, we
eventually obtain the exact, general expression of the
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factorizing field as a function of the net interactions along
the different axes:

 2hf �
���������������������������������������������
�J x � J z��J y � J z�

q
: (8)

In Eq. (8), the net interaction along the y axis depends on
the antiferromagnetic order on the x axis, and, hence, it is
given by J y �

P
��1�rZrJ

r
y. We remark that Eq. (8) is

completely general and holds for lattices of arbitrary spa-
tial dimension and for interactions of arbitrary range.

We are left to determine the conditions under which the
factorized eigenstate j�fi is associated to the lowest en-
ergy eigenvalue. A general sufficient condition is that
every two-site reduced state, obtained from j�fi by a
partial trace over all sites except the pair fi; jg (which is
still a pure state since j�fi is factorized), is the ground
state of Hij for every pair fi; jg. Given the relation existing

between all of the pair Hamiltonians Hij and the total

Hamiltonian H, it follows that if a state is associated to
the lowest eigenvalue of every Hij, then it is associated to

the lowest eigenvalue of H. To proceed, we need to dis-
tinguish between the various possible cases, depending on
the structure of the couplings Jr�.

Models with short range interactions.—By short range,
or nearest-neighbor, we mean Jr� � 0 for all � and r � 2.
Antiferromagnetic order is ensured by having J1

x � 1 and
jJ1
y;zj � 1. For one-dimensional models, we have Z1 � 2,

J x � �2, J y � �2J1
y , and J z � 2J1

z . By inserting these
quantities into Eqs. (4), (5), and (8), we obtain the expres-
sions for � and for the factorized ground state j�fi. The

explicit expression of the factorizing field is h�d�1�
f ��������������������������������������

�1� J1
z ��J1

y � J1
z �

q
and the energy per site reads "�d�1� �

�1=8��J z � J y � 2� � �1=4��1� J1
z � J

1
y�. Besides re-

producing the original results of Kurmann, Thomas, and
Müller [5], the analytic method allows us to establish that
ground state factorization occurs for a much larger range of
values of the couplings. Our general framework singles out
novel instances of classical-like ground states already in
this simple model, as pictorially sketched in Fig. 1.

The analytic approach can be extended immediately to
higher-dimensional lattices. For a square lattice, the num-
ber of nearest neighbors is Z1 � 4, and hence the net
interactions read J x � �4, J y � �4J1

y , and J z � 4J1
z .

Therefore, moving from one to two dimensions, we find
that factorization occurs in the same domains of couplings
and for the same value of � but at a factorizing field and
with an energy per site that are twice the corresponding
quantities in one dimension: h�d�2�

f � 2h�d�1�
f and "�d�2� �

2"�d�1�. These exact results recover, confirm, and extend
recent numerical findings [6].

As the resources for numerical simulations scale with
the lattice dimension, and in the absence of analytic ap-
proaches, it is not surprising that no study of factorization
in three-dimensional systems was attempted so far.

However, by exploiting our novel analytic method, such
a study can be carried out exactly and straightforwardly.
Namely, by moving from square to cubic lattices, we need
only to insert the correct value of the coordination number
Z1 � 6. It is then straightforward to prove that for three-
dimensional models ground state factorization occurs at
the same values of the couplings as in one dimension but at
a factorization field and with an energy per site that are
3 times the corresponding quantities in one dimension:
h�d�3�
f � 3h�d�1�

f and "�d�3� � 3"�d�1�.
The ferromagnetic counterparts of the antiferromagnetic

models can be immediately recovered by performing �=2
rotation around the z axis at each lattice site in either one of
the two sublattices. Hence, given a set of couplings
�1; J1

y; J1
z � for which an antiferromagnetic factorized

ground state occurs, there exists a corresponding set of
couplings ��1;�J1

y; J
1
z � for which a ferromagnetic factor-

ized ground state occurs at the same value of the factoriz-
ing field hf, the same energy per site, and the same value
of �.

Models with finite range interactions.—In the case of
spin systems with short range interactions, the set of
Eqs. (7) is automatically verified by any model that admits
a real solution for Eqs. (4) and (8). This redundancy is
removed as soon as one considers interactions of longer
spatial range, because in these cases the net interactions do
not depend on the nearest-neighbor couplings alone. To
illustrate this important point, let us consider ferromag-
netic models in arbitrary spatial dimensions and with non-
vanishing interactions up to a certain finite distance s:
Jrx;y < 0 8 r � s, Jrx;y � 0 8 r � s, and Jrz � 0 8 r. It
is straightforward to verify that a sufficient condition for
ground state factorization is that the ratio of the nonvanish-
ing couplings must satisfy the relation Jrx=J1

x � Jry=J1
y �

�r 8 r � s. Otherwise, Eqs. (7) do not admit solutions. If
this condition is satisfied, we have that the net interactions

Jz

0– Jx Jx

– Jx

0

Jx

Jy

IIIIII

IIIIIIIIII

FIG. 1 (color online). Spin-1=2 models with short range inter-
actions: Domains in the space of couplings. Region I (vertical
lines): Domain of parameters for which ground state factoriza-
tion was originally identified [5] and is established rigorously in
the present Letter. Region II (horizontal lines): Domain in which
factorization is established for the first time, and rigorously, in
the present Letter. Region III (no lines): Domain in which
factorization is rigorously excluded. All plotted quantities are
dimensionless.
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(that in the ferromagnetic instance read J x;y �
P
rZrJ

r
x;y)

are J x;y � �J1
x;y, where � �

Ps
r�1 Zr�r. Ground state

factorization occurs at h�s�f � ��J1
xJ1
y�

1=2, with an energy
per site " � ���J1

x � J
1
y��=8. Therefore, at exactly defined

ratios of the couplings, systems with finite range interac-
tions admit fully separable ground states analogous to the
ones arising in the case of systems with only nearest-
neighbor couplings. The factorizing field and the energy
per site are increased exactly by a factor �=2 with respect
to the case of models with short range interactions.

Models with infinite range interactions.—A very inter-
esting limiting case is given by models with infinite range
interactions, such as the fully connected or Lipkin-
Meshkov-Glick (LMG) model [15], which is obtained in
the limit of diverging s and couplings of the form Jrx;y �
Jx;y � 2�x;y=N 8 r. The scaling with the number of lat-
tice sites N ensures that the net interactions converge to a
finite value in the thermodynamic limit: J x;y ! 2�x;y. It is
then rather straightforward to solve Eqs. (7) exactly and
prove that the ground state of the LMG model is a fully
factorized ferromagnetic state for �x � 1, 0 � �y � 1,

hf �
������
�y

q
at � � arccoshf, and an energy per site " �

�1� �y�=4. These results justify rigorously recent numeri-
cal findings [11].

Comments.—We have introduced a simple and general
analytic approach to the exact determination of factorized
ground states in quantum spin systems. We have applied
the scheme to spin-1=2 models with general anisotropic
Heisenberg-like interactions of arbitrary range and for
lattices of arbitrary dimensions. Besides the rigorous deri-
vation of the few known, mainly numerical, results, we
have showed that our method allows us to determine ex-
actly novel classes of factorization points in various mod-
els, generally nonexactly solvable, for different lattice
dimensions and for different interaction ranges.
Furthermore, according to the general theorem by
Kurmann, Thomas, and Müller on factorization [5], given
any Hamiltonian of the form Eq. (1) with generic spin S >
1=2, the ground state of the system is factorized at the same
value of the external field h � hf [Eq. (8)], at which
factorization occurs in the corresponding spin-1=2 model.
Therefore, the method and the results derived in the present
Letter are straightforwardly generalized to interacting sys-
tems with arbitrary value of the spin which are endowed
with the same Hamiltonian structures as in the spin-1=2
case. Further applications to other systems, defined, e.g.,
on ladders and coupled planes, or to models with frustra-
tion and in complex geometries, can, in principle, be
carried out by suitably adapting the general framework
introduced in the present work. From a conceptual stand-
point, the method introduced in this Letter realizes a rig-
orous and analytic implementation of concepts motivated
by quantum information theory to obtain genuinely new
insights on founding open questions of condensed matter
physics.
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