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3Computational Physics, IfB, ETH-Hönggerberg, Schafmattstrasse 6, 8093 Zürich, Switzerland

(Received 1 February 2008; published 15 May 2008)

We investigate the origin of Paris’ law, which states that the velocity of a crack at subcritical load grows
like a power law, da=dt� ��K�m, where �K is the stress-intensity-factor amplitude. Starting from a
damage-accumulation function proportional to �����, �� being the stress amplitude, we show analyti-
cally that the asymptotic exponent m can be expressed as a piecewise-linear function of the exponent �,
namely, m � 6� 2� for � < �c, and m � � for � � �c, reflecting the existence of a critical value �c �
2. We perform numerical simulations to confirm this result for finite sizes. Finally, we introduce bounded
disorder in the breaking thresholds and find that below �c disorder is relevant, i.e., the exponent m is
changed, while above �c disorder is irrelevant.
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In 1963 Paris and Erdogan [1] postulated that under
fatigue loading a subcritical crack grows with a velocity
that increases with the stress-intensity factor, or equiva-
lently the crack length, as a power law with an empirically
determined exponent m. Numerous experiments showed
that this law is valid over at least 3 orders of magnitude for
a very wide spectrum of materials [2]. The Paris law (also
known as the Paris-Erdogan law) had huge implications in
engineering since it allowed us to predict the residual
lifetime of loaded materials quantitatively. Today this law
constitutes part of basic knowledge and is taught in ele-
mentary courses on mechanics [3]. Although there have
been attempts to derive the Paris law in terms of geomet-
rical and crack-tip damage-accumulation models (see, e.g.,
Ref. [3] and references therein), no work has been capable
of establishing a firm connection between the Paris expo-
nent and microscopic parameters. It is the aim of our Letter
to present analytical and numerical calculations relating
the Paris exponent m to the local damage-accumulation
law. This constitutes a micro-macro derivation of the Paris
law.

For bodies under cyclic load with stress range ��,
subcritical fatigue crack growth follows the Paris law [1],

 

da
dt
� ��K�m � C���

���
a
p
�m; (1)

where a is the crack half-length, �K � ��
���
a
p

is the stress-
intensity factor range, and m is a material-dependent ex-
ponent. Integration over time leads to the Basquin law [4],
tf � �����m, which relates the lifetime tf (or equivalently
the number of loading cycles to failure) to the stress
amplitude. Let us note that while the Basquin law applies
to high-cycle fatigue with an exponent m depending on the
material structure, at low-cycle fatigue the corresponding
empirical relation, tf � ������, where �� is the plastic
deformation, is called the Coffin-Manson law and has an

exponent � that is remarkably close to 2, at least for poly-
crystalline single-phased metals [5]. Recent work [6] has
shown that, in the rupture of fiber-bundle models subject to
fatigue damage governed by damage-accumulation func-
tions of the form �����, the Basquin law is verified with an
exponent given by the damage-accumulation exponent �.
This brings the question as to whether it is possible to
establish a direct connection between a microscopic
damage-accumulation form and the Paris law, via the
corresponding exponents. Here, the term ‘‘microscopic’’
denotes the micrometer rather than the atomic (nanometer)
length scale.

In order to address this question, we consider a linear
crack of length 2a, in a two-dimensional medium subject
to a transverse external stress �0 exerted very far from the
crack, as depicted in Fig. 1. We model the medium as
composed of small elements connected by stiff elastic
springs, with separation �r. In the continuum limit, and
within linear elasticity theory, the transverse stress at a
point along the crack line, a distance x from the midpoint
of the crack, is given by [7]

 ��x; a� � �0
x������������

x� a
p ������������

x� a
p : (2)

Close to the crack tip (x ’ a), the stress diverges as
��x; a� � K=

����������������������
2��x� a�

p
, defining the stress-intensity-

factor K � �0

�������
�a
p

.
We assume that the medium is under cyclic load, with an

external stress varying between �min and �max, leading to a
stress-intensity-factor range �K � ��max � �min�

�������
�a
p

.
We further assume that fatigue damage is the sole factor
driving crack growth, which happens only along the crack
line [8]. Specifically, the half-length of the crack increases
by �r when the accumulated damage at the crack tip
reaches a threshold value Fthr. Damage increments are
assumed to be given by
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 �F�x; a� � f0�t�a�����x; a�	�; (3)

where �t�a� is the number of cycles during which the crack
has length 2a, f0 is a constant related to the time scale, and
���x; a� is calculated from Eq. (2) with �0 varying be-
tween �min and �max. The heuristic [9] power-law depen-
dence of the damage increment can be justified by invoking
concepts of self-similarity [10], and � can be seen as a
stress-amplification exponent [11].

The accumulated damage at point x when the crack has
length 2a is given by

 F�x; a� � F�x; a� �r� � �F�x; a�: (4)

Since the half-length of the crack increases from a� �r to
a when the accumulated damage F�a� �r; a� reaches
Fthr, it follows from Eqs. (3) and (4) that

 �t�a� �
Fthr � F�a� �r; a� �r�
f0����a� �r; a�	

� : (5)

Here, in order to avoid the appearance of infinities, we
assume that the spring attached to an element at position x
experiences a stress given by ��x� �r; a�. To a first
approximation, this is consistent with the fact that linear
elasticity theory must break down in the immediate vicinity
of the crack tip, giving rise to a fracture process zone or
plastic zone [3,12].

Numerical iteration of the above equations reveals a
time dependence of the crack length 2a which, for large
values of a, reproduces the Paris law, Eq. (1), with a
�-dependent exponent m, as shown in the inset in Fig. 2.
Notice thatm (as determined from the slopes of the log-log
plots) seems to reach a minimum value for � ’ 2. This can
be explained as a result of the competition between
damage accumulation mostly around the crack tip, which
happens for �
 1, and uniform damage along the whole

crack line, which dominates as � approaches zero. The
existence of this minimum is confirmed by calculations of
m as a function of �, obtained by power-law fits of da=dt
versus a, using various system sizes L. As shown in the
main panel in Fig. 2, there are strong finite-size effects
around �c � 2. As L! 1, the minimum in each curve
shifts slowly towards m � 2 at �c � 2, suggesting an
asymptotic form

 m �
�

6� 2�; for � < �c;
�; for � > �c:

(6)

This can be checked by a finite-size scaling hypothesis,

 

1

m�L� � 2
�

�
LxF��j�� 2jLx�; for � < �c;
LxF��j�� 2jLx�; for � > �c;

(7)

which, as shown in Fig. 3, is nicely fulfilled by our nu-
merical data with x � 0:089. Both scaling functions be-
have as F��u� � u

�1, for u
 1, in agreement with the
suggestion that, in the continuum limit (L
 �r), m
should be a linear function of � for both � < �c and � >
�c. We have therefore found evidence that � � �c is a
critical point, associated with the divergence of the stress
integral along the crack line. Our conclusion that m � 2 is
fully compatible with values reported for various materials
throughout the literature.

The prediction of Eq. (6) is confirmed by an analytical
treatment of Eqs. (3)–(5). From the time �t�a0� during
which the crack length is 2a0, we can calculate the in-
stantaneous damage F�a0 � 2�r; a0� at the next crack-tip
position a0 � 2�r, and then recursively determine the
damage fraction at the successive crack-tip positions,
Gn � F�a� �r; a� �r�=Fthr, from �t�a� �r� and
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FIG. 2 (color online). Inset: Log-log plot of the time derivative
of the crack half-length a, as a function of a=a0, for various
values of the damage exponent �. In each case, the time scale
was adjusted so that da=dt approaches unity as a approaches the
initial value a0 � 100�r. Main panel: Dependence of the Paris
exponent m on �, for different values of the system size L. The
dashed curve corresponds to Eq. (6).
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FIG. 1. A very thin crack of length 2a, propagating along the
dashed line in a planar medium subject to a stress �0 at infinity.
Point P is at a distance x from the crack center.
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F�a� �r; a� 2�r�, with a � a0 � n�r. As a result, it is
possible to write the recurrence relation

 Gn �
Xn
k�1

gn;kGk�1 �
Xn
k�1

gn;k; (8)

with G0 � 0 and

 gn;k �
�

���a0 � �n� 1��r; a0 � �k� 1��r�
���a0 � k�r; a0 � �k� 1��r�

�
�
: (9)

Notice that gn;k is determined by the ratio between the
stress amplitudes at position n�r and at the crack tip, when
the crack has grown by a distance 2k�r. From Eqs. (2) and
(5), it follows that, for a � a0 � n�r, with n
 1,

 

da
dt
�

�r
�t�a�

�
n�=2

1�Gn
; (10)

so that the scaling behavior of the crack growth rate
depends on the scaling behavior of Gn. This can be inves-
tigated by looking at Eqs. (8) and (9), from which, if �r

a0 
 n�r, we obtain the asymptotic forms

 gn;k ’

8><
>:
�2�r=a0�

�=2; for k
 a0=�r;
2�=2k��=2; for a0=�r
 k
 n;
�n� k� 2���=2; for k & n:

(11)

It is also easy to show that gn;k has a single minimum at
kmin ’ n=

���
3
p

, so that, as n! 1, the sum on the right-hand
side of Eq. (8) has a power-law divergence n1��=2 for � <
2, while it converges to a finite value C� � ��12�� � 1 for
� > 2, where ��x� is the Riemann zeta function. It follows
that Gn approaches C�=�1� C��< 1 for � > 2, and from
Eq. (10) we immediately see that m � �. On the other
hand, numerical calculations show that, for � < 2, Gn
asymptotically approaches unity; although we were not
able to derive an analytic expression, it can be readily
checked numerically that in this case

 1�Gn � n�3�1��=2�; (12)

leading, when combined with Eq. (10), to m � 6� 2�.
For � > �c � 2, in the light of Basquin’s law, the pre-

diction m � � is compatible with the result obtained in
Ref. [6], stating that the Basquin-law exponent is given by
the damage exponent �. This is no longer valid for � < �c.
However, the models studied in Ref. [6] involve random-
ness in both fatigue and stress thresholds as additional
ingredients.

In order to investigate the effects of disorder on the Paris
exponent, we introduce a distribution of values of the
fatigue thresholds with lower (upper) cutoff F1 (F2), so
that each lattice point has a local threshold F1 � Fthr�x� �
F2. An obvious consequence of the disorder is that, de-
pending on the disorder strength and on the damage ex-
ponent �, it is possible that a point far from the crack tip
reaches its local fatigue threshold before a point closer to
the crack tip. This leads to the occurrence of rupture
avalanches, in much the same way as in fiber-bundle
models (see, e.g., Ref. [13]).

Conditions for the appearance of avalanches can be
derived from the analytical approach presented above.
Avalanches will occur if, for some crack length 2a, the
local threshold at position a� �r is less than the accumu-
lated damage at that position when the crack had length
2�a� �r�, i.e., Fthr�a� �r�<F�a� �r; a� �r�. As the
fatigue thresholds are no longer the same for all points,
Eq. (8) ceases to be valid. However, F�a� �r; a� �r� can
still be written as a linear combination of the thresholds of
the points closer to the crack center, with coefficients
related to the stress ratios gn;k. In the absence of any
previous avalanches, and for � > �c � 2, the value of
F�a� �r; a� �r� is limited by F2 times the asymptotic
value of Gn, i.e., F�a� �r; a� �r� � F2C�=�1� C��.
Since F1 � Fthr�a� �r�, we conclude that avalanches
will occur if

 F1 � F2

C�
1� C�

� 0)
F1

F2
�

C�
1� C�

: (13)

On the other hand, for � < �c, any finite amount of dis-
order leads to the occurrence of avalanches.

Confirmation of this prediction, as well as further infor-
mation on the effects of disorder, can be obtained from
numerical calculations. In order to analyze the results of
those calculations, we integrate the Paris law to obtain

 1� �a0=a�m=2�1 � Bt; (14)

where B is a m-dependent constant related to the inverse
rupture time. Introducing fatigue thresholds uniformly dis-
tributed between F1 and F2, numerical iteration of Eqs. (2)
and (3)—modified to accommodate local thresholds—
shows that, for � > �c, plots of 1� �a0=a�m=2�1 for large
times (not shown) remain straight lines, with the same
value of m � � as in the absence of disorder; however,

10
-1

10
0

10
1

|γ−2|Lx

10
-1

10
0

(m
−2

)−1
/L

x

L = 212

L = 213

L = 214

L = 215

L = 216

L = 217

L = 218

γ < 2

γ > 2

FIG. 3 (color online). Scaling plot of m versus � for different
values of the system size L, showing conformance with Eq. (7).
The best data collapse is obtained with x � 0:089.
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for sufficiently small values of f � F1=F2, the coefficient
B becomes disorder dependent.

For � < �c, we confirm the occurrence of avalanches for
any amount of disorder. Also, as shown in Fig. 4 (main
panel), the prediction of Eq. (14) is no longer verified,
indicating that the Paris exponent m is actually modified
by the introduction of disorder [14]. The new exponent m0,
which recovers the linear behavior predicted by Eq. (14), is
almost independent of the ratio f, for sufficiently strong
disorder, as also shown in Fig. 4 (inset), and we have
checked that in this limit the ratio �m0 � 2�=�m� 2� is
independent of �, being given approximately by 0.76.

We have been able to derive analytically and confirm
numerically the Paris law and found that its exponentm is a
function of the damage exponent � describing the micro-
scopic damage-accumulation law. To our surprise we dis-
covered that �c � 2 is a critical point characterized by a
scaling law and a critical exponent which separates two
regimes with different linear functions m���. In addition
we also studied the role of disorder and found again that
�c � 2 plays a special role: disorder is relevant below it
and irrelevant above it. Our results can have far-reaching
consequences in the understanding and control of subcrit-
ical crack propagation. On one hand the discovered rela-
tion between the damage and the Paris exponents, which in
principle could be checked experimentally, could help to
predict lifetimes of samples by studying the velocity of
small cracks. As we found, the value �c � 2 is very
special. For example, to avoid the influence of disorder
one must try to stay above �c. Finally, it is important to
mention that the exponent � of the damage-accumulation
law is material dependent and could therefore play a
central role in the engineering design to increase the ro-
bustness and optimize the mechanical performance of
the system. The derivation of power-law damage-
accumulation functions from atomistic processes would

be of much interest, and represents a big challenge for
future work.
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FIG. 4 (color online). Rescaled plots of the crack length for
� � 1

2 and various ratios f � F1=F2 between the minimum and
maximum values of the fatigue thresholds. Main panel: rescaling
as given by Eq. (14). Inset: rescaling with an exponent 1:14 �
1
2m� 1. All curves were obtained for system size L � 215 and
averaged over 500 disorder realizations.
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