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On the basis of a recently proposed scenario of the transformation of the Kolmogorov cascade into the
Kelvin-wave cascade, we develop a theory of low-temperature cutoff. The theory predicts a specific
behavior of the quantized vortex line density, L, controlled by the frictional coefficient, ��T� � 1,
responsible for the cutoff. The curve ln L�ln�� is found to directly reflect the structure of the cascade,
revealing four qualitatively distinct wave number regions. Excellent agreement with a recent experiment
by Walmsley et al. [Phys. Rev. Lett. 99, 265302 (2007)]—in which L�T� has been measured down to
T � 0:08 K—implies that the scenario of low-temperature superfluid turbulence is now experimentally
validated and allows to quantify the Kelvin-wave cascade spectrum.
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In the studies of superfluid turbulence (ST) (for intro-
duction, see, e.g., [1,2]), the case of very low temperatures
remains intriguing and challenging [3]. A wealth of theo-
retical work has been devoted to ST in this regime in the
past decade and especially in the past few years [4–14],
and a detailed theoretical picture seems to emerge. In this
picture, the most interesting physics is associated with the
short length scales, where quantized nature of vortices
manifests itself and the key role is played by Kelvin waves
(KWs)—the distortion waves on quantized vortex lines.
However, the feasibility of experimental confirmation of
these predictions with the current technique seemed vague,
which to many made the theory appear purely academic.
Until recently, the only experimentally confirmed fact had
been the existence of cascades in the T ! 0 limit [15,16].

In their recent remarkable work [17], Walmsley et al.
measured the vortex line density L (the length of vortex
lines per unit volume) of the Kolmogorov cascade in
superfluid 4He down to temperatures T � 0:08 K. They
found a striking temperature dependence of L and argued
that it should be due to the Kelvin-wave cascade [4–14]
being extended to higher wave numbers with decreasing
temperature. Better understanding of this process was for-
mulated as a challenge for theorists.

In this Letter, we meet the above-mentioned challenge.
Recently the two of us proposed a detailed scenario [14] of
how the zero-temperature Kolmogorov cascade transforms
into the pure KW cascade. We argued that the transforma-
tion involves a chain of three intermediate regimes and thus
occupies a significant interval in the wave number space.
On the basis of this zero-temperature scenario, we now
develop a theory of the low-temperature dissipative cutoff
of the cascade. We show that the temperature dependence
of L comes from the dependence of the wavelength scale
�cuttoff , at which the cascade ceases due to the mutual
friction of vortex lines with the normal component, on
the dimensionless friction coefficient � / T5�T ! 0�. A
very characteristic shape of the function lnL�ln�� follow-

ing from our analysis is in excellent agreement with the
experimental results of Walmsley et al. Remarkably, the
shape of the curve lnL�ln�� directly reflects four qualita-
tively distinct wave number regions of the cascade. The
agreement between our theory and the data of Ref. [17]
means that the scenario of low-temperature superfluid
turbulence is now experimentally validated. Moreover,
fitting the experimental data with theoretical curves allows
us to quantify the KW cascade spectrum.

A cascade of energy—the decay mechanism of both
classical and superfluid turbulence—implies the existence
of an inertial range—a significant range of length scales,
�en > �> �cutoff , in which all the dissipative mechanisms
are weak, rendering the system essentially conservative.
The long- and the short-wavelength ends of the inertial
range play a special role: almost all the energy of the
system is concentrated at �en, while the dissipation be-
comes appreciable only at � & �cutoff � �cutoff�T�. The
relaxation process must lead to a transfer of the turbulent
energy toward �cutoff , where it can be dissipated into heat.
For the cascade regime to set in, it is also necessary that the
dynamics within the inertial range is such that the ‘‘colli-
sional’’ kinetic time �coll���, i.e., the time between elemen-
tary events of energy exchange at a certain scale �, gets
progressively shorter down the scales. In this case the
decay is governed by the slowest kinetics at �en, where
the energy flux (per unit mass) " is formed, while the faster
kinetic processes at shorter scales are able to instantly
adjust to this flux, supporting the transfer of energy be-
tween neighboring scales toward �cutoff . Thus, the cascade
is a (quasi-)stationary regime in which the energy flux " is
constant through the length scales, while the variation of "
in time happens on the longest time scale of the system
�coll��en�.

In Ref. [14] we argued that at the effective zero tem-
perature the inertial range is highly nontrivial, since the
energy transport mechanisms change several times within
it. We first briefly outline the T � 0 case (see [14] for
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details) and then proceed to include the effect of mutual
friction due to the finite T. In this scenario, the key dy-
namical parameter is � � ln�l0=a0� � 1, where a0 is the
vortex core radius and l0 is the typical separation between
the vortex lines determined by the Kolmogorov energy flux
" [14]. The parameter � controls the competition between
the local self-induced motion of the vortex lines and the
coupling between them. At the largest length scales in the
inertial range, �� r0 ��1=2l0, the vortex lines are
coupled in bundles that move coherently, mimicking the
velocity profile of the classical-fluid Kolmogorov turbu-
lence. (The indistinguishability of ST from its classical
counterpart at large scales has been attracting much atten-
tion since it was first predicted in Ref. [5].) At the scale r0,
the self-induced motion of vortex lines becomes appre-
ciable and the cascade enters the quantized regime, where
each vortex line evolves independently (apart from recon-
nections). Before the purely nonlinear KW cascade [10]
can develop on separate vortex lines at k� k� ��1=2=l0,
the cascade experiences a complex transformation stage
necessary to cross over from spatially organized bundles at
k� r	1

0 and to generate the KWs. In the crossover, which
(given �� 10) extends for about a decade in the wave
number space, the vortex line reconnections [4] become
the main driving mechanism of the energy transport in the
cascade. Remarkably, the crossover range is further split
into three (sub)regimes distinguished by their specific
types of reconnections: (1) reconnections of vortex line
bundles (r	1

0 � k� kb � 1=�1=4l0), (2) reconnections
between nearest-neighbor lines (kb � k� kc �
�1=4=l0), (3) self-reconnections on single lines (kc � k�
k�). It is important here that each regime features a distinct
spectrum of KW amplitude bk, summarized in Fig. 1.

If the vortex lines were smooth, the vortex line density L
would be simply related to the interline separation as L �
l	2
0 . The increase of L due to the creation of KWs on the

vortex lines is related to their spectrum by [4]

 ln
L���=L0� �
Z kcutoff ���

~k
�bkk�

2dk=k: (1)

Here kcutoff � 1=�cutoff , ~k is the smallest wave number of
the KW cascade (not to be confused with the smallest wave
number of the Kolmogorov cascade) at which the concept
of a definite cutoff scale is meaningful, and L0 is the
‘‘background’’ line density corresponding to kcutoff � ~k.
There is an ambiguity in the definition of bk associated
with the choice of the spectral width of the scale k, which is
fixed in Eq. (1) by setting the proportionality constant on
each side to unity.

At T � 0, the cascade is cut off by the radiation of sound
(at least in 4He) [6] at the length scale �cutoff � �ph

[11,14]. As we show below, changing the temperature
one controls �cutoff�T�> �ph in Eq. (1), which allows one
to scan the KW cascade observing qualitative changes in
L�T� as �cutoff traverses different cascade regimes. The
existence of a well-defined cutoff is due to the fact that

the cascade is supported by rare kinetic events in the sense
that �coll � �coll�"; k� is much larger than the KW oscilla-
tion period, �per � �per�k�. The dissipative time �dis �

�dis��; k� � �per=�, as we show below, is the typical time
of the frictional decay of a KW at the scale k. Thus, the
cutoff condition is �dis��; k� � �coll�"; k�, which implies
that the energy dissipation rate at a given wave number
scale becomes comparable to the energy being transferred
to higher wave number scales per unit time by the cascade.
It is this condition that defines the cutoff wave number
kcutoff � kcutoff�"; ��. Decreasing T and thus ��T�, one
gradually increases kcutoff , thereby scanning the cascade.
In view of Eq. (1), this in principle allows one to extract the
KW spectrum.

At finite T, dissipative dynamics of a vortex line element
is described by the equation (omitting the third term in the
right-hand side, which is irrelevant for dissipation) [1,2]

 

_s � v�s� � �s0  
vn�s� 	 v�s��: (2)

Here v�r� is the superfluid velocity field, vn�r� is the normal
velocity field, s � s��; t� is the time-evolving radius-
vector of the vortex line element parameterized by the
arc length, and the dot and the prime denote differentiation
with respect to time and the arc length, respectively.

At �� 1 the superfluid and normal components are
strongly coupled and the KWs are suppressed. In this
case, the cascade must cease before it enters the quantized
regime; i.e. �cutoff * r0. In this Letter, we do not discuss
the strongly coupled case, since it has no control parameter
for a theory. Consideration regarding energy spectra in this
regime can be found in Ref. [18].

If, however, the mutual friction is small, then �	1 � 1
gives the characteristic number of KWoscillations required
for the wave to decay. Indeed, to the first approximation in
1=�, v�s� in Eq. (2) is given by the local induction ap-
proximation [1]

FIG. 1. Spectrum of Kelvin waves in the quantized regime as
predicted in Ref. [14] and quantified here, apart from the
regime (1), by the fit to experimental data, Fig. 2. In view of
Eq. (1), the constants C and �2 can be found only in the
combination �2C � 0:049. The regimes (1)–(4) are different
by their energy transport mechanisms (see text).
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 v �s� � �R
�

4�
s0  s00; �R � ln�R=a0�; (3)

where � is the circulation quantum and R is the typical
curvature radius. Taking into account that �R is a very
weak function of R, we shall treat it as a constant of the
typical value �R ��. As long as �� 1, the disturbance
of the normal component caused by vortex line motion can
be neglected in Eq. (2), so that vn�s� is irrelevant for KW
dissipation. In this case, Eqs. (2) and (3), give the rate at
which the amplitude bk of a KW with wave number k
decays due to the mutual friction: _bk �	�!kbk, while
the KW dispersion is !k � ��=4���k2. Here and below
we omit factors of order unity, which are subject to the
definition of the spectral width of the wave. These factors
cannot be found within our theory but can be extracted
from experimental data (as we do it below) and from
numerical simulations. Since the energy per unit line
length associated with the wave is Ek � ��!kb

2
k, the

power dissipated (per unit line length) at the scale �k	1

is given by

 ��k� � ���!2
kb

2
k; (4)

where � is the fluid density. In the following, we analyze
ST as ��T� scans through the regimes shown in Fig. 1.

Regime (1).—As already mentioned, at this stage the
vortex lines are organized in bundles; the amplitudes of
waves on these lines are given by [14] bk � r	1

0 k	2. One
can estimate the total power lost due to the friction of these
bundles at the wave number scale r	1

0 � k� kb per unit
mass of the fluid as

 "dis�k� �
1

�b2
k

b2
k

l20
��k� � ��3�=l40: (5)

Here, the first factor in the right-hand side is associated
with the correlation volume at this scale �b2

kk
	1 [14] and

the second one stands for the number of vortex lines in the
volume. Note that the dissipated power is constant at all the
length scales within this regime, and, since according to
Ref. [14] the interline separation is related to the
Kolmogorov flux by "���3=l40, it is simply given by
�". Thus, when �� 1 the kinetic channel in the whole
regime (1) becomes efficient and the cascade reaches the
scale �b, where the notion of bundles becomes meaning-
less. That is, the regime (1), as opposed to the regimes (2)–
(4), is not actually scanned by �—its inertial range devel-
ops as a whole while � evolves from �� 1 to �� 1.

Regime (2).—In the range kb � k� kc, the spectrum
of KWs is given by [14] bk � l0�kb=k�1=2, which for the
dissipated power yields

 "dis�k� �
1

�l20
��k� � ��3�7=4k3=l0: (6)

The condition "dis�k� � " gives the cutoff wave number

 kcutoff��2�	1=4�	1=3�2�=l0�; kb�kcutoff�kc; (7)

where �2 is some constant of order unity. Then, from
Eq. (1) we obtain

 ln
L�kcutoff�

L0
� C2�kbl0�2
kcutoff=kb 	 1�: (8)

Here, we set bk � Cl0�kb=k�1=2, where C is a constant of
order unity. The overall magnitude of bk in the other
regimes follows then from the continuity.

Regime (3).—In this regime, supported by self-
reconnections, the spectrum is given by bk � k	1 (up to
a logarithmic prefactor). The corresponding energy bal-
ance condition yields the cutoff scale:

 kcutoff � �3����
	1=2�2�=l0�; kc� kcutoff � k�: (9)

With the logarithmic prefactor taken into account [4],
the spectrum in this regime reads bk � C
1�
c2

3 ln�k=kc��
	1=2�

����������
kckb
p

=k�l0, where c3 is a constant of
order unity. Then the relative increase of vortex line den-
sity through this regime is given by

 

L�kcutoff�

L�kc�
�

�
1� c2

3 ln
kcutoff

kc

�
�
; (10)

where � � C2kckbl
2
0=c

2
3.

Regime (4).—Since the spectrum of the purely nonlinear
regime, bk � k	6=5, is steeper than the marginal bk � k	1,
meaning that the integral in Eq. (1) builds up at the lower
limit, as soon as kcutoff * k� the line density L�kcutoff� starts
to saturate and becomes independent of kcutoff at kcutoff �
k�. The energy balance gives the dependence kcutoff���,

 kcutoff � �4�	3=4�	5=8�2�=l0�; kcutoff � k�; (11)

where �4 is an unknown constant. The coefficient in
the KW spectrum is fixed by continuity with the pre-
vious regime, yielding bk � C
1� c2

3 ln�k�=kc��
	1=2����������

kckb
p

k1=5
� k	6=5l0. Equation (1) thus yields

 

L�kcutoff�

L�k��
�1�

�5C2=2�kckbl
2
0

1�c2
3 ln�k�=kc�

�
1	

�
k�

kcutoff

�
2=5
�
: (12)

The continuity of kcutoff leads to the following con-
straints on the free coefficients in Eqs. (7), (9), and (11),
�3 � �2�1=4�1=6

c , �4 � �2�1=2�1=6
c �1=8

� , where �c �
�	3=2 is the value of the friction coefficient at which the
cascade is cut off at the crossover between the regimes (2)
and (3) and �� � 1=�2 corresponds to the one between (3)
and (4). Introducing �b & 1, corresponding to the cross-
over from the regime (1) to (2), we rewrite Eqs. (8), (10),
and (12), in terms of �:
 

ln
L���
L0
� A2
��b=��

1=3 	 1�; �c � �� �b;

L���
L��c�

�

�
1� �c2

3=2� ln
�c
�

�
�
; �� � �� �c;

L���
L����

� 1� A4

�
1	

�
�
��

�
1=4
�
; �� ��;

(13)

where A2 � �2��
2�2

2C
2=�1=2�2=3

b , � � �2��2�2
2C

2=
�1=2��c�b�1=3c2

3, and A4 � 5�2��2�2
2C

2=2�1=2
1�
�c2

3=2� ln��c=������c�b�1=3.
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In conclusion, we discuss the qualitative form of L��� in
connection with the alternative scenario of the crossover
from the Kolmogorov to the KW cascade proposed by
L’vov et al. [13]. In Ref. [14] we argued that this scenario
mistakenly leaves out the reconnection-driven regimes.
[Note, however, that, due to the suppression of the role of
reconnections, the theory of L’vov et al. might be appli-
cable to the special case of highly polarized turbulence, as
the experiments under rotation [19] seem to suggest.] In
this scenario the classical regime extends down to the scale
of interline separation l0, where it is immediately followed
by the purely nonlinear KW cascade [regime (4) in our
notation]. Since the kinetics of the regime (4) are too weak
to support the flux " at this scale, the vorticity was pro-
posed in [13] to build up in the classical regime at the
scales adjacent to l0 —the so-called bottleneck effect.
Although this picture would also naturally predict a sig-
nificant increase of L, the peculiar behavior of L��� ob-
served in [17] essentially rules out the scenario of
Ref. [13]. The reason is that the dramatic rise of L happens
only at � as low as 10	3, while the bottleneck accumu-
lation of classical vorticity must manifest itself as soon as
KWs become an unavoidable relaxational channel, i.e.,
already at � & 1.

Instead, L��� exhibits the qualitative form peculiar to
the scenario of Ref. [14]. As � decreases from �� 1 to the
values significantly smaller than unity, the line density L
increases only by some factor close to unity (�1:5 in the
experiment), which reflects the formation of the regime (1)
driven by the reconnections of vortex bundles. During the

crossover from the region (1) to (2), the increase of L is
minimal—a shoulder in the curve L��� arises, in contrast
to a large increase of L expected in the bottleneck picture.
It is only well inside the region (2) that the increase of L
becomes progressively pronounced, and, at the crossover
to the region (3), the function L��� achieves its maximal
slope, determined by the fractalization of the vortex lines
necessary to support the cascade within the interval (3). As
the cutoff moves along the interval (3) toward higher wave
numbers, the slope of L��� becomes less steep due to the
decrease of the characteristic amplitude of KW turbulence.
When the cutoff passes the crossover to the regime (4), the
curve L��� gradually levels. Fitting the experimental data
fixes the values of all the dimensionless parameters, thus
revealing the quantitative form of the KW spectrum, Fig. 1.
Note, however, that in view of the fact that the experimen-
tal �� 10 is not so large we would expect certain system-
atic deviations, but a significant scatter of the experimental
data does not allow us to assess them.
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FIG. 2 (color online). Fit of the experimental data (squares and
diamonds) adapted from Ref. [17] (l0 � 5 10	3 cm, giving
� � 13). The high temperature measurements of Refs. [20,21],
are represented by triangles and inverted triangles, respectively.
The form of ��T� is taken according to Ref. [22] at T * 0:5 K
(roton scattering) and according to Ref. [23] at T & 0:5 K
(phonon scattering). The fitting parameters are A2 � 0:36, A4 �
0:33, c3 � 2:9, � � 0:18 with �b � 2 10	2, �c �
2:5 10	4, �� � 2 10	5.
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