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Photonic Integrated Device for Chaos Applications in Communications
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A novel photonic monolithic integrated device consisting of a distributed feedback laser, a passive
resonator, and active elements that control the optical feedback properties has been designed, fabricated,
and evaluated as a compact potential chaotic emitter in optical communications. Under diverse operating
parameters, the device behaves in different modes providing stable solutions, periodic states, and
broadband chaotic dynamics. Chaos data analysis is performed in order to quantify the complexity and
chaoticity of the experimental reconstructed attractors by applying nonlinear noise filtering.
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The exigency for increased security in data exchange
using the fledging technology of optical communication
networks, which is used nowadays as the dominant back-
bone data transmission infrastructure, has directed a con-
siderable part of research to physical layer data encryption
techniques [1-3]. Synchronization in nonlinear and
chaotic systems [4—7] has established a revolutionary ap-
proach in securing data communications over fiber trans-
mission, by encoding the messages over chaotic optical
carriers. Based on optical feedback [8,9], optical injection
[10], and optoelectronic feedback [11] techniques applied
to semiconductor lasers, various configurations of trans-
mitters have been proposed and implemented, providing
high-dimensional chaotic carriers capable of message en-
cryption [1]. The latter takes advantage of the off-the-shelf
fiber-optic technology resulting in rather cuambersome de-
vices, impractical for commercial use.

The miniaturization of the above configurations through
photonic integration appears very attractive, albeit scarce,
considering the efficiency of specifically designed pho-
tonic integrated circuits (PICs) to generate nonlinear dy-
namics [12—15]. In [12] monolithic colliding-pulse mode-
locked lasers exhibited nonlinear behavior, from cw opera-
tion to self-pulsations and mode-locking, for the full range
of the control parameters. In [13] a semiconductor laser,
followed by a phase section and an active feedback ele-
ment, forms a very short complex photonic circuit that
provides several types of dynamics and bifurcations under
optical feedback strength and phase control. However, only
multiple-mode beating operation may transit the dynamics
beyond a torus breakup with possible chaotic components.
A simplified version of the aforementioned PIC, omitting
through the active feedback element, was found to generate
only distinct-frequency self-pulsations [14]. Very recently,
using an integrated colliding-pulse mode-locked semicon-
ductor laser, the existence of nonlinear dynamics and low-
frequency chaos in PICs was demonstrated by controlling
through only the laser injection current [15]. Albeit all the
aforementioned integrated devices present interesting non-
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linear and chaotic behavior, they are not suitable for gen-
erating high-dimensional broadband chaotic emission for
message encryption applications. The ultimate objective of
this work is to exploit the complex dynamics of such
devices in a way that will fulfill the criteria for efficient
data encryption on the physical layer.

In this Letter, we present a novel photonic integrated
circuit, capable of generating high-dimensional broadband
chaos. The proposed device incorporates the fundamental
principles of the all-optical feedback theory, using ele-
ments that provide the capability to control the chaotic
properties of the optical emission accurately and reprodu-
cibly. It consists of four successive sections (Fig. 1): a
distributed feedback (DFB) InGaAsP semiconductor laser
operating at 1561 nm, followed by a gain-absorption sec-
tion (GAS), a phase section (PH) and a 1 cm long passive
waveguide. The passive waveguide is grown by a selective
area epitaxial growth. The overall resonator length is de-
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FIG. 1 (color online). (Top) Schematic diagram of the pho-
tonic integrated device. (Bottom) Detail of the mask design of
the integrated device: (a) InGaAsP DFB laser; (b) gain-
absorption section; (c) phase section; (d) passive waveguide.
While the laser facet is anti-reflection coated, the end of the
waveguide is highly reflective coated (e). The lengths of the
different sections are in micrometers.
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fined by the internal laser facet and the chip facet of the
waveguide which is highly reflective coated (HRC) (R =
95%) and includes the GAS and PH. A criterion of the
selection of the cavity length is the ability of the device to
produce chaotic attractors with high complexity. The se-
lected length of 1 cm provides an increased effective feed-
back round-trip time, therefore enhancing the probability
to encounter fully chaotic behavior, as also predicted nu-
merically in [16,17] using a modified Lang-Kobayashi set
of rate equations. The integration of a GAS emerges from
the requirement to control the optical feedback strength.
Taking into account that the PIC’s optical feedback is
determined by its total internal losses and the passive
waveguide facet reflectivity, the GAS provides a twofold
operation:

In cases where the desirable feedback values surpass the
provided feedback of the passive cavity (GAS and PH
unbiased), positive biasing of the GAS—acting thus as a
semiconductor optical amplifier (SOA)—provides the
ability to amplify the optical field emitted from the inner
facet of the laser and thus increase the feedback strength. In
cases where lower values of optical feedback are needed,
the GAS can be reverse biased and acts as a variable optical
attenuator (VOA). Consequently, a very wide range of
optical feedback values can be set and thus various types
of dynamics can be generated. The integration of a PH
emerges from the requirement to adjust the phase of the
optical feedback field [18]. While the GAS affects both
intensity and the phase of the feedback signal, the PH
allows for fine-tuning that can almost continuously go
over beyond 27, even several multiples of it. This is crucial
for controlling the dynamics performance of lasers with
external short-cavity optical feedback, since the response
of the laser is triggered by a coherent delayed optical field.

The total internal losses of the fabricated device and the
reflectivity of the external cavity coating determine practi-
cally the amount of the optical feedback that is driven into
the laser section. The internal losses are attributed to the
different section interfaces and the waveguide losses.
Considering a zero-biased GAS, the above internal losses
are measured 9 dB per pass approximately, corresponding
to an optical feedback power ratio of 1.6%. The losses have
been estimated by measuring the light coming out from the
HRC end of the waveguide. For a measured value of
optical output of the laser and a given reflectivity of the
HRC facet the total losses can be easily estimated. Short
external cavities (lengths up to a few centimeters) require a
relatively strong optical feedback in order to generate high-
dimensional dynamics. In our case, the integrated GAS
will provide the prerequisite gain to strengthen the optical
signal or compensate for the additional losses inside the
cavity providing the desirable value of the optical
feedback.

According to our numerical calculations (using the rate-
equation model in [16]) and experimental measurements,
the laser biasing current is not crucial for achieving en-
hanced nonlinear dynamics when it is kept well above

threshold. When the DFB laser is biased at 3Ity (Ity =
10.6 mA) different types of dynamics can be observed
depending on GAS and PH operation. Four different oper-
ating regions have been identified for specific values of
GAS biasing:

(a) GAS reverse biasing = VOA operation.—When the
GAS is reverse biased, e.g., at —0.4 V, the total attenuation
that the emitted power experiences after a round trip within
the cavity is enhanced to 23 dB. Here, the optical power
feedback ratio was estimated to be 0.5%. Only limit cycle
dynamics or stable solutions (cw operation) are observed
excluding any chaos dynamics.

(b) Igas = 0 mA.—The dynamics of the output signal
differs considerably when altering the cavity phase
through the PH current Ipy. Such a behavior has been
previously reported [16] for the short-cavity regime, as a
manifestation of a strong dependence of the largest
Lyapunov exponent on the feedback phase value. This
phase dependence was also experimentally observed in
[17], where the short cavity was formed by an aspheric
lens collimating the laser beam and a semitransparent
dielectric mirror. By increasing Ipy the observed dynamic
states are periodically repeated every 6.2 mA, indicating a
cycle of 27 phase change. The different dynamic states,
which include limit cycles and chaotic states, are depicted
in Fig. 2 and emerge for different phase values. In some
narrow phase current regions two intense peaks are ob-
served at 3.3 and 6.6 GHz, while the rest spectral compo-
nents lay almost just above the noise floor [Figs. 2(a) and
2(e)]. These peaks correspond to the external cavity
modes; however, their frequencies shift slightly with phase
tuning. A similar observation was reported in [17], where
the phase dependence of the dynamics was exhibited as
well. The physical explanation for this frequency shift is
the dependence of the frequency of the external cavity
modes on the feedback phase according to stability analy-
sis theory [19]. In other phase current regions, various limit
cycle conditions arise: the first peak may be suppressed
entirely or additional peaks of moderate power may arise
[Fig. 2(b)]. There is also a range for the phase section
current values (from 5.4 to 5.9 mA) in which the device
operates in the coherence collapse regime providing a
chaotic output, as revealed from the phase plots of
Figs. 2(c) and 2(d). In this operating region the radio-
frequency spectrum of the output signal becomes broad-
band and extends up to the cutoff frequency of the optical
receiver (around 8 GHz). The frequency peaks are now
much less intense, however still distinguishable from the
rest strengthened spectral components.

(c) Igas = 5 mA = SOA operation.—When the GAS is
slightly positively biased (e.g., 5 mA), the provided gain in
the cavity compensates the internal losses, increasing the
optical power feedback ratio to 2.8%. In this case, there is
only a single phase condition in which an intense peak at
6.3 GHz emerges in the microwave spectrum. The rest
phase region was found to provide only broad-spectrum
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FIG.2 (color online). Feedback phase dependence:
Experimental phase plots (left column) and corresponding mi-
crowave spectra (right column) of the device output for I = 311y
and Igas = 0 mA. From (a) to (e), Ipg = 3.3, 4.8, 5.5, 5.9, and
6.9 mA. The colored (gray scale) trace denotes the filtered
attractor.

chaotic dynamics,
dependence.

(d) Igas = 10 mA = SOA operation.—When the GAS
is moderately biased (e.g., 10 mA), providing now 1.3 dB
additional gain compared to the previous condition (c), the
optical power feedback ratio rises to 3.3% and the output
signal now is fully chaotic and independent of any phase
condition (Fig. 3). Any further increase in the GAS current
does not provide any alteration in the characteristics of the
chaotic spectrum.

In order to investigate the dynamics of the experimen-
tally resolved time series, chaos data analysis is performed

therefore deteriorating the phase
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FIG. 3 (color online). Experimental phase plots (left panel)
and corresponding microwave spectra (right panel) of the device
output for I =3Iy, Igas = 10 mA and Ipy = 2.9 mA. The
colored (gray scale) trace denotes the filtered attractor.

since the prevalent idea is to identify the complexity of the
strange attractors and substantiate their suitability for en-
cryption applications. Experimental data, and especially
laser series, are always noise contaminated and may lead to
false claims regarding chaos identification or even to aver
erroneous estimates of the correlation dimension and
Kolmogorov entropy calculation [20,21]. In order to visu-
alize the substantial dynamics for every recorded time -
series, it is prudent to enroll noise-reduction methods. For
complex chaotic data, state-space averaging is considered
as one of the most apt and intricate methods (in contrast to
linear filtering) in order to remove nondeterministic com-
ponents from a series, to ameliorate visually the geometri-
cal structure of the reconstructed attractor (Figs. 2 and 3),
and to illuminate the underlying mechanisms. Following
this method, one has to postdict or hindcast with
a posteriori knowledge of all N points, by averaging the
segments of the data in which a window of *m points on
each side of X, (the matrix containing each experimental
data) is close to it in state space [22,23]:

S X, W, (k)

X = where
n N—m ’
ZkZm Wn(k)( )2 (1)
- ;'n:—m X —i sz*i
w,(k) = exp[ kz }
ON

The filtered series is denoted by )?n, and the value of m
used herein was m = 9. The parameter oy (the standard
deviation of noise), which is evidently unknown, is opti-
mized by adjusting it to the best in-sample fit [23]. The
noise-filtered attractors are superimposed to the initially
recorded ones shown in color (or gray scale) in Figs. 2 and
3. The delay 7 is defined as the time value for which the
autocorrelation function decays to the inverse Euler con-
stant e~ ! [24]. The applied noise-reduction method herein
follows the rationale that the geometrical topology and
dynamics maintain their unmitigated complexity and the
variance of noise is smaller than the signal.

The correlation dimension D, and Kolmogorov entropy
K, were calculated with the Grassberger-Procaccia method
[25]. For a detailed description of this method, see
[21,23,25-27]. For the zero-biased GAS (subsection b)
chaos data analysis is performed in Fig. 4. The depicted
values of D, (black solid line) and K, (black dash-dotted
line) correspond to the noise-filtered attractors. The calcu-
lation of complexity is patently arduous and misleading for
the original attractors, especially when periodic states are
concerned. Because of the noise presence resulting in the
augment of loss of correlation between neighbor points, the
periodic states are incorrectly evaluated as chaotic (D, > 2
and K, > 0). Therefore, the latter are omitted and D, is
plotted (Fig. 4, red or gray line) only for the chaotic states.
All cases that correspond to limit cycle dynamics in Fig. 4
are characterized by a low correlation dimension D,—
approximately close to unity taking into account the sto-
chastic noise sources—and zero entropy K,. However, for
the chaotic operation achieved for 5.4 < Ipy <5.9 the
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FIG. 4 (color online). Correlation dimension D, and

Kolmogorov entropy K, as the feedback phase varies for I =
31ty and Igas = 0 mA. Red (gray) denotes the value of D, for
the chaotic nonfiltered original series, the black solid line
denotes D, for the filtered series, and the black dash-dotted
line denotes K, for the filtered series. The inset depicts an
experimental chaotic time series for Ipy = 5.5 mA.

correlation dimension and the Kolmogorov entropy now
are considerably increased up to D, =6 and K, =
8.8 ns™!, respectively.

For the case of the filtered time series in Fig. 3 [sub-
section (d)], the dimension was calculated D, = 4.8 = (0.3
together with K, = 10 ns™!, values higher than those cal-
culated in Fig. 4 for the zero-biased GAS. This result is
expected due to the increased feedback strength. For the
originally captured experimental time series, dimension
could not be estimated since the correlation integral was
increasing with the embedding dimension (and therefore
assumed D, > 6) whereas K, remained unaltered. These
results verify the work in [26] for entropy invariability and
dimension alteration with applying noise reduction in cha-
otic cases. The filter is not able to destroy or create infor-
mation by itself but is able to provide the correct
geometrical morphology of the attractor by mitigating
the spuriously increased dimension aright. For periodic
cases and stable solutions, but also for chaotic cases that
are amply contaminated with noise of comparable ampli-
tude [27], K, is affected since noise mimics a chaotic
attractor that actually is a noisy one (K, and D, — )
but with limited bandwidth (therefore K, and D, have
finite spurious values).

The trend nowadays in the next-generation optical com-
munication systems is towards robust and sophisticated
integrated photonic circuits. With respect to that, a novel
photonic integrated circuit that is capable of producing
broadband high-dimensional chaotic dynamics was de-
signed, fabricated, and investigated in terms of complexity
and chaoticity. Dynamics can be easily controlled experi-
mentally via the phase current and feedback strength,
therefore establishing this device as a compact integrated
chaos emitter. Since the dynamics are well identified, the
advantages of the proposed photonic integrated device

may be fully exploited to our benefit with a fervent expec-
tation for applications to secure chaos-encoded optical
communications.
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