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Within the minimal supersymmetric extension of the standard model, the mass of the light CP-even
Higgs boson is computed to three-loop accuracy, taking into account the next-to-next-to-leading order
effects from supersymmetric quantum chromodynamics. We consider two different scenarios for the mass
hierarchies of the supersymmetric spectrum. Our numerical results amount to corrections of about
500 MeV, which is of the same order as the experimental accuracy expected at the CERN Large
Hadron Collider.
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Introduction.—Supersymmetry (SUSY) is currently the
most-studied extension of the standard model (SM) (see,
e.g., Ref. [1]). It provides solutions to some profound
theoretical problems of the standard model: the fine-tuning
of the Higgs mass, the (non)unification of gauge couplings,
a mechanism for spontaneous symmetry breaking, and a
cold dark matter candidate.

The minimal supersymmetric extension of the standard
model (MSSM) is based on a two-Higgs-doublet model
with five physical Higgs bosons: two CP-even h=H, one
CP-odd A (also named the ‘‘pseudoscalar’’ Higgs), and
two charged scalars H�. Each particle of this two-Higgs-
doublet model receives a SUSY partner of opposite spin
statistics, where left- and right-handed components of a
standard model Dirac fermion are attributed with separate
scalars ~fL=R which mix to the physical mass eigenstates
~f1=2.

Compared to the standard model, the MSSM Higgs
sector is described by two additional parameters, usually
chosen to be the pseudoscalar mass MA and the ratio of the
vacuum expectation values of the two Higgs doublets,
tan� � v2=v1. The masses of the other Higgs bosons are
then fixed by SUSY constraints. In particular, the mass of
the light CP-even Higgs bosonMh is bounded from above.
At tree level, it is Mh <MZ. Radiative corrections to the
Higgs pole masses raise this bound substantially to values
that were inaccessible by LEP [2– 4]. The large numerical
impact is due to a contribution��tM2

t �M
4
t coming from

top and stop quark loops (Mt is the top quark mass and
�����
�t
p

is proportional to the top Yukawa coupling).
The one-loop corrections to the Higgs pole masses are

known without any approximations [5–8]. They show that
the bulk of the numerical effects can be obtained in the so-
called effective-potential approach in the limit of vanishing
external momentum. Motivated by this observation, all
presumably relevant two-loop terms have since been eval-
uated in this approach (for reviews, see, e.g., Refs. [9,10]).
More recently there has been quite a lot of activity in the
context of the MSSM with complex parameters which can
lead to sizable effects (see, e.g., Ref. [11]). The two-loop

results are implemented in the numerical programs
FEYNHIGGS [12] and CPSUPERH [13,14] using on-shell par-
ticle masses, and in SOFTSUSY [15], SPHENO [16], and
SUSPECT [17] using DR parameters, that is, dimensional
reduction with minimal subtraction. The influence of terms
that goes beyond the approximation of vanishing external
momentum has been investigated in Ref. [18].

Based mostly on the renormalization scale and scheme
dependence, the theoretical uncertainty on the prediction
of the light Higgs boson massMh has been estimated to 3–
5 GeV [10,19]. This is to be compared with the expected
experimental uncertainty of a Higgs mass measurement at
the CERN Large Hadron Collider (LHC) of the order of
100–200 MeV [20]. At the International Linear Collider,
this goes even down to roughly 50 MeV [21]. These
numbers clearly show the need for three-loop corrections
to the SUSY Higgs boson masses in order to fully exploit
the physics potential of these colliders.

In fact, quite recently the leading and next-to-leading
logarithmic terms in ln�MSUSY=Mt� at three-loop level
have been obtained, where MSUSY is the typical scale of
SUSY particle masses [22]. In this Letter, we want to
present the first genuine three-loop calculation of the light-
est Higgs boson mass, focusing on a few simplifying
limiting cases for the sake of brevity. In particular, we
consider effects of order �t�2

s , keep only the leading terms
�M4

t , and neglect all mixing effects in the stop sector.
More general results and their detailed phenomenological
impacts shall be deferred to a later publication.

Higgs boson mass in the MSSM.—At tree level, the mass
matrix of the neutral, CP-even Higgs bosons h, H has the
following form:

 

M2
H;tree

�
sin2�

2

M2
Z cot��M2

A tan� �M2
Z �M

2
A

�M2
Z �M

2
A M2

Z tan��M2
A cot�

 !
:

(1)

The diagonalization of M2
H;tree gives the tree-level result
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for Mh and MH and leads to the well-known bound Mh <
MZ which is approached in the limit tan�! 1.

Quantum corrections to the Higgs boson masses are
incorporated by evaluating the poles of the Higgs boson
propagator at higher orders. As mentioned in the
Introduction, the numerically dominant contributions can
be obtained in the approximation of zero external momen-
tum (see, e.g., Ref. [23]) which we will adopt in the
following. Furthermore, we will only consider corrections
of order �t�2

s . Apart from the quark, squark, and gluino
masses, there is another parameter with mass dimension,
the trilinear coupling of the soft SUSY breaking terms At.
Before renormalization, we express it through the stop
masses M~t1 , M~t2 , the stop mixing angle �t, and the bilinear
Higgs parameter �SUSY as follows:

 2MtAt � �M
2
~t1
�M2

~t2
� sin2�t � 2Mt�SUSY cot�: (2)

The mass matrix M2
H is obtained from the quadratic

terms in the Higgs boson potential constructed from the
fields �1 and �2. They are related to the physical Higgs
mass eigenstates via a mixing angle �. Since �1 does not
couple directly to top quarks, it is convenient to perform
the calculations of the Feynman diagrams in the (�1; �2)
basis.

Including higher order corrections, one obtains the
Higgs boson mass matrix

 M 2
H �M2

H;tree �
�̂�1

�̂�1�2

�̂�1�2
�̂�2

 !
; (3)

which again gives the physical Higgs boson masses upon
diagonalization. The renormalized quantities �̂�1

, �̂�2
,

and �̂�1�2
are obtained from the self-energies of the fields

�1,�2, A, evaluated at zero external momentum, as well as
from tadpole contributions of �1 and �2 (see, e.g.,
Ref. [9]). Let us remark that if one sets M~t1 � M~t2 and
At � 0, and evaluates only the leading contribution �M4

t ,
then only �̂�2

� 0 and the matrix M2
H �M2

H;tree is di-
agonal. On the other hand, if we allow for nonzero At, also
�̂�1

and �̂�1�2
contribute in general.

The calculation of �̂�2
is organized as follows: All

Feynman diagrams are generated with QGRAF [24]. In order
to properly take into account the Majorana character of the
gluino, the output is subsequently manipulated by a PERL

script which applies the rules given in Ref. [25]. The
various diagram topologies are identified and transformed
to FORM [26] with the help of Q2E and EXP [27,28]. The
program EXP is also used in order to apply the asymptotic
expansion (see, e.g., Ref. [29]) in the various mass hier-
archies. The actual evaluation of the integrals is performed
with the package MATAD [30], resulting in an expansion in
d� 4 for each diagram, where d is the space-time dimen-
sion. The total number of three-loop diagrams amounts to
about 16 000.

At three-loop level we need to renormalize the top quark
mass, the top squark mass, and the stop mixing angle at the

two-loop order. In addition, the one-loop counterterm of
the gluino mass is needed for the renormalization of the
two-loop expression. We implement dimensional reduction
with the help of the so-called � scalars which appear for the
first time at two loops. The renormalization of the �-scalar
mass is performed in the on-shell scheme, requiring that
the renormalized mass is equal to zero. In the literature this
is referred to as the DR0 scheme.

The one-loop on-shell counterterms are well known
(see, e.g., Refs. [8,31–33]). As far as the two-loop counter-
terms for the squarks and quarks are concerned, one can
find the results in Refs. [34,35]. However, it is rather
tedious to extract the results for the mass hierarchies we
are interested in. Thus, we recomputed the corresponding
corrections.

To our knowledge, the two-loop counterterm for the stop
mixing angle is not yet available in the literature. It turns
out that in our approximation, where M~t1 � M~t2 and At �
0, only the one-loop counterterm of the mixing angle enters
the three-loop result.

As a cross-check for our calculation, we recalculated the
exact two-loop result (in the limit of vanishing external
momentum) and find perfect agreement with the literature
[23,36]. Furthermore, the expansion of the exact expres-
sions confirms the limiting cases discussed below. Both the
two- and three-loop calculations are performed for a gen-
eral QCD gauge parameter �S. The independence of the
final results on �S serves as another welcome check on the
correctness of our result.

We use anticommuting �5 which is allowed for fermion
traces which involve an even number of �5 matrices. It
turns out that all traces involving an odd number of �5

vanish because they contain less than four � matrices.
In the following we discuss three different cases for the

mass hierarchy. In all cases we set the light quark masses to
zero.

(i) Supersymmetric limit, i.e., Mt � M~t and the gluino
and other squarks are massless: M~g � M~q � 0. The quan-
tum corrections to the Higgs boson mass vanish in this
case, as required by supersymmetry. Still, the individual
diagrams are different from zero and thus the calculation
imposes a strong check on our setup.

(ii) Massless gluino, M~g � 0. Expanding in the limit
Mt � M~t � M~q 	 MSUSY, we obtain for the leading term
of this expansion
 

�̂�2
�

3GFM4
t���

2
p
	2sin2�

�
LtS �

�s
	

�1� 4LtS � 2L2

tS�

�

�
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�
2
�
�
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�

3

4
L�t �

23

81
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3

�

�
�
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4
� 3L�t �

4

9
	2 �

4

9
	2 ln2

�
LtS

�

�
�

1

12
�

3

2
L�t

�
L2
tS �

5

2
L3
tS

��
; (4)

with L�t � ln��2=M2
t � and LtS � ln�M2

t =M2
SUSY�.
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(iii) Common SUSY mass. In this scenario we assume
Mt � M~t1 � M~t2 � M~g 	 MSUSY � M~q. Even though
the top squark masses are equal and thus the mixing angle
is zero, it is necessary to introduce a counterterm for �t.
Since the latter has contributions proportional to 1=�M2

~t2
�

M2
~t1
�, we expand the one- and two-loop result in this limit

before inserting the counterterms. The cancellation of such
terms in the final result provides another check on our
calculation.

It is important to keep At � 0 in the one- and two-loop
contributions and to use Eq. (2) before renormalization,
because the corresponding counterterms generate terms of
order M4

t at three-loop level. Setting At � 0 in the end, we
obtain
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�

3GFM4
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(5)

where Lt~q � ln�M2
t =M2

~q�. In Eq. (5) we display only the
leading term in the 1=M~q expansion. We actually com-
puted five expansion terms and observe a rapid conver-
gence of the series—even for MSUSY � M~q. It is
interesting to mention that large cancellations occur among
the cubic, quadratic, linear, and nonlogarithmic term of
�̂�2

at three-loop order. For example, for our default input
values the sum of the cubic and quadratic logarithm is
negative whereas the complete answer leads to a positive
correction for the �2

s coefficient of �̂�2
.

If we express the result of Eq. (5) in terms of DR0

parameters, we can compare with the results obtained in
Ref. [22]. We find agreement for the cubic logarithm, but
the quadratic logarithm disagrees [37].

Numerical results.—In the remainder of this Letter, we
discuss the numerical effect of our result, restricting our-
selves to At � 0. We adopt the on-shell scheme for the
quark, squark, and gluino masses.

We choose � � Mt as the default value for the renor-
malization scale. First we compute �s�Mt�, defined in the
DR scheme and the full SUSY theory, from the SM input
value �s�MZ� � 0:1189 [38] which is given within five-
flavor QCD. We follow the procedure outlined in Ref. [39]
which includes three-loop running and two-loop matching
effects. As a result we obtain, e.g., �s�Mt� � 0:0926 for a
common SUSY mass MSUSY � 1 TeV. The SM input
parameters are given as GF � 1:166 37� 10�5 GeV�2,

MZ � 91:1876 GeV [40], Mt � 170:9 GeV [41]. For the
heavy squark mass (~q � ~t) we use M~q � 2 TeV.

In order to evaluate the tree-level approximation of the
Higgs boson mass we also need the parameters MA and
tan�. If not stated otherwise we adopt the values MA �
1 TeV and tan� � 40. Since these parameters do not enter
the corrections considered in this Letter, they only have
minor influence on the plots presented in the following.

In Figs. 1 and 2 we discuss the difference between the
Higgs boson mass evaluated with i-loop approximation
and the tree-level result,

 �M�i�h � M�i loop�
h �Mtree

h : (6)

Figure 1 shows �M�i�h for i � 1 (dotted line), i � 2 (dashed
line), and i � 3 (solid line) as a function of MSUSY in the
range between 200 GeV and 2 TeV. As is well known, the
one-loop corrections are large, increasing Mh by up to
46 GeV. The two-loop effects are negative, reducing the
size of the overall corrections by about 30% with respect to
the one-loop result.

The three-loop terms are much smaller and clearly sta-
bilize the perturbative behavior. At � � Mt, for example,
they lead to a further reduction of �M�i�h by about 400 MeV
for MSUSY � 300 GeV and an enhancement of about
500 MeV for MSUSY � 2 TeV. Note that the numerical
impact is larger than the precision on the lightest Higgs
boson mass as expected at the LHC.

In order to estimate the size of the higher order correc-
tions, we consider the dependence of the result on the
choice of the renormalization scale. In Fig. 2 we plot
�M�i�h as a function of � which is varied from 50 to
500 GeV. The two-loop results show a variation of more
than 1 GeV over this range. The error band derived in this
way nicely covers the three-loop result, which itself varies
by less than 35 MeV. For other values of MSUSY the
variation can reach up to 100 MeV. The three-loop curve
in Fig. 2 shows a shallow minimum close to� � Mt which
in turn is close to the intersection point of the two- and
three-loop result. This justifies the choice � � Mt as de-
fault value.
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FIG. 1 (color online). �Mh as a function of MSUSY at one-,
two-, and three-loop level. The renormalization scale is set to
� � Mt.
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Conclusions.—To summarize, in this Letter the three-
loop corrections to the lightest Higgs boson mass have
been computed in three different limits of the SUSY pa-
rameter space. For the phenomenologically interesting
case where the gluino and top squarks have about the
same mass and the remaining squarks are heavier, we
observe effects of approximately 500 MeV. The depen-
dence of the three-loop result on the renormalization scale
indicates that the residual theoretical uncertainty matches
the expected accuracy for a Higgs mass measurement at the
LHC and possibly even at a future linear collider.

It remains to say that the calculational setup which was
used to obtain the results of this Letter is not restricted to
the specific MSSM parameter points considered here. A
more comprehensive study is in preparation and will be
presented elsewhere.
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FIG. 2 (color online). �Mh as a function of the renormaliza-
tion scale � at two- and three-loop level, where MSUSY � 1 TeV
has been chosen.
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