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In recent work we showed that, for a class of conformal field theories (CFT) with Gauss-Bonnet gravity
dual, the shear viscosity to entropy density ratio, �=s, could violate the conjectured Kovtun-Starinets-Son
viscosity bound, �=s � 1=4�. In this Letter we argue, in the context of the same model, that tuning �=s
below �16=25��1=4�� induces microcausality violation in the CFT, rendering the theory inconsistent. This
is a concrete example in which inconsistency of a theory and a lower bound on viscosity are correlated,
supporting the idea of a possible universal lower bound on �=s for all consistent theories.
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The anti–de Sitter (AdS)/conformal field theory (CFT)
correspondence [1–4] has yielded striking insights into the
dynamics of strongly coupled gauge theories. Among them
is the universality of the ratio of the shear viscosity � to the
entropy density s [5–8],
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1

4�
; (1)

for all gauge theories with an Einstein gravity dual in the
limit N ! 1 and �! 1, where N is the number of colors
and � is the ’t Hooft coupling. It was further conjectured in
[8] that (1) is a universal lower bound [the Kovtun-
Starinets-Son (KSS) bound] for all materials. So far, all
known substances including water and liquid helium sat-
isfy the bound. The systems coming closest to the bound
include the quark-gluon plasma created at RHIC [9–14]
and certain cold atomic gases in the unitarity limit (see,
e.g., [15]). �=s for pure gluon QCD slightly above the
deconfinement temperature has also been calculated on the
lattice recently [16] and is about 30% larger than (1) (see
also [17]). Furthermore, the leading order �0 correction to
�=s has been calculated for the dual of type IIB string
theory on AdS5 � S5 and found to satisfy the bound
[18,19]. See [20–24] for other discussions of the bound.

From the point of view of AdS/CFT, an interesting
feature of the KSS bound is that it is saturated by
Einstein gravity. Thus at the linearized order generic small
corrections to Einstein gravity violate the bound half of the
time. Given that we do expect corrections to Einstein
gravity to occur in any quantum theory of gravity, it
appears that the bound is in immediate danger of being
violated. On the other hand, the correctness of the bound
would impose an important constraint on possible higher
order corrections to Einstein gravity.

Motivated by the vastness of the string landscape [25],
we have explored the modification of �=s due to generic
higher derivative terms in the holographic gravity dual
[26]. For closely related work, including a plausible coun-

terexample to the KSS bound, see [27]. In particular, for a
class of (3� 1)-dimensional CFTs with Gauss-Bonnet
gravity dual, described by the classical action of the form
[28] (below � � � 6

L2 and the Gibbons-Hawking term [29]
is suppressed)
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we found that [26]
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We emphasize that this result is nonperturbative in �GB, not
just a linearly corrected value. From (3) the KSS bound is
violated for �GB > 0 and as �GB !

1
4 , the shear viscosity

goes to zero [30].
In this Letter, we will argue that, when �GB >

9
100 , the

theory violates microcausality and is inconsistent. Thus,
for (3� 1)-dimensional CFT duals of (4� 1)-dimensional
Gauss-Bonnet gravity, consistency of the theory requires
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This provides a concrete example in which a lower bound
on �=s and the consistency of the theory are correlated.
The 36% difference from the KSS bound is mysterious,
and we discuss two obvious possibilities at the end. Our
discussion below will rely heavily on a few technical
results derived in [26], to which we refer the readers for
details and references.

The static black brane solution for (2) can be written as
[31]

 ds2 � �f�r�N2
]dt

2 �
1

f�r�
dr2 �

r2

L2

�X3

i�1

dx2
i

�
; (5)
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In (5),N] is an arbitrary constant which specifies the speed
of light of the boundary theory. We will take it to be N2

] 

1
2 �1�

��������������������
1� 4�GB

p
� to set the boundary speed of light to

unity. The horizon is located at r � r� and the Hawking
temperature is T � N]

r�
�L2 . Such a solution describes the

boundary theory on R3;1 at a temperature T.
The shear viscosity can be computed by studying small

metric fluctuations 	 � h1
2 around the black brane back-

ground (5). We will take 	 to be independent of x1 and x2

and write

 	�t; ~x; r� �
Z d!dq

�2��2
	�r;!; q�e�i!t�iqx3 : (7)

At quadratic level, the effective action for	�r;!; q� can be
found from (2) as (up to surface terms)

 S � �
1

2
C
Z
dz
d!dq

�2��2
�Kj@z	j

2 � K2j	j
2� (8)

where C is a constant, and
 

K � z2 ~f�z� �GB
~f0�;

K2 � K
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]
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� ~q2z�1� �GB

~f00�:

(9)

Primes above denote derivatives with respect to z and we
have introduced the following notation

 z �
r
r�
; ~! �

L2

r�
!; ~q �

L2

r�
q; (10)
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From (8) one can derive the retarded two-point function for
the stress tensor component T12 in the boundary CFT and
read off the shear viscosity (3) in the small q and! limit. In
[26] it was also observed that for �GB >

9
100 and sufficiently

large q, the equation of motion for 	 admits solutions
which can be interpreted as metastable quasiparticles of
the boundary CFT. We will now argue that these quasipar-
ticles can travel faster than the speed of light and thus
violate causality. We will first display this phenomenon
using graviton geodesics.

In a gravity theory with higher derivative terms, graviton
wave packets in general do not propagate on the light cone
of a given background geometry. The equation of motion
following from (8) can be written as

 

~g ��eff
~r� ~r�	 � 0; (12)

where ~r� is a covariant derivative with respect to the

effective geometry ~geff
�� � �2geff

�� given by

 geff
��dx

�dx� � f�r�N2
]

�
�dt2 �

1

c2
g
dx2

3

�
�

1
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Here, �2 � K
~f
z�1� �GB

~f00� and

 c2
g�z� �

N2
]

~f

z2

1� �GB
~f00

1� �GB
~f0

z

(14)

can be interpreted as the local ‘‘speed of graviton’’ on a
constant r-hypersurface. As pointed out in [26], an impor-
tant feature of (14) is that cg can be greater than 1 when
�GB >

9
100 (see Fig. 1). Note that cg has a maximum

cg;max > 1 somewhere outside the horizon and approaches
1 near the boundary at infinity. We will restrict our atten-
tion to �GB >

9
100 for the rest of the Letter.

From standard geometrical optics arguments [32], in the
large momentum limit, a localized wave packet of a gravi-
ton should follow a null geodesic x��s� in the effective
graviton geometry (13). More explicitly, write the wave
function (7) in the form 	 � ei��t;r;x3�	en�t; r; x3�, where
� is a rapidly varying phase and 	en denotes a slowly
varying envelope function. Inserting into (12), we find at
leading order

 

dx�

ds

dx�

ds
geff
�� � 0; (15)

with the identification dx�
ds 
 g��eff k� 
 g��effr��. Given

translational symmetries in the t and x3 directions, we
can interpret ! and q as conserved integrals of motion
along the geodesic,

 ! �
�
dt
ds

�
fN2

]; q �
�
dx3

ds

�
fN2

]

1

c2
g
: (16)

Assuming q � 0 and rescaling the affine parameter as ~s �
qs=N], we get from (15) and (16)

 

�
dr
d~s

�
2
� �2 � c2

g; � 

!
q
: (17)

This describes a one-dimensional particle of energy �2
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FIG. 1 (color online). Left: c2
g�z� as a function of z for �GB �

0:245. c2
g has a maximum c2

g;max at zmax. As �GB is increased
from �GB �

9
100 to �GB �

1
4 , c2

g;max increases from 1 to 3. c2
g�z�

also serves as the classical potential for the 1D system (17). The
horizontal line indicates the trajectory of a classical particle.
Right: U�y� [defined in (25)] as a function of y for �GB � 0:245.
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moving in a potential given by c2
g. As is clear from Fig. 1,

geodesics starting from the boundary can bounce back to
the boundary, with a turning point rturn��� given by

 �2 � c2
g�rturn�: (18)

In contrast, for �GB �
9

100 , cg�z� is a monotonically in-
creasing function of z and there is no bouncing geodesic.
For a null bouncing geodesic starting and ending at the
boundary, we then have

 �t��� � 2
Z 1
rturn���

_t
_r
dr �

2

N]

Z 1
rturn���

�

f
�����������������
�2 � c2

g

q dr;

(19)

 �x3��� � 2
Z 1
rturn���

_x3

_r
dr �

2

N]

Z 1
rturn���

c2
g

f
�����������������
�2 � c2

g

q dr;

(20)

where dots indicate derivatives with respect to ~s.
In the boundary CFT we have local operators which

create bulk disturbances at infinity that propagate on gravi-
ton geodesics sufficiently deep inside the bulk (r & !)
[33]. In particular, we expect microcausality violation in
the boundary CFT if there exists a bouncing graviton
geodesic with �x3���

�t��� > 1 [34]. Now, as rturn ! rmax (�!
cg;max), a geodesic hovers near rmax for a long time, prop-
agating with a speed cg;max in x3-direction. Indeed, the
integrals in (19) and (20) are dominated by contributions
near rmax. In such a limit, the ratio of the integrand in
�x3��� to that in �t��� near rmax is cg;max. Thus, �x3���

�t��� !

cg;max > 1, violating causality.
We will now show explicitly that the superluminal gravi-

ton propagation described above corresponds to superlu-
minal propagation of metastable quasiparticles [35] in the
boundary CFT with �x3

�t identified as the group velocity of
the quasiparticles. For this purpose, we rewrite the full
wave equation (12) in a Schrödinger form

 � @2
y � V�y� � ~!2 (21)

with  and y defined by

 

dy
dz
�

1

N] ~f�z�
;  � B	; B �

����
K
~f

s
; (22)

and

 V�y� � ~q2c2
g�z� � V1; V1�y� �

N2
]

~f2

B

�
B00 �

~f0

~f
B0
�
:

(23)

In the above primes denote derivatives with respect to z.
Note that y�z� is a monotonically increasing function of z
with y! 0 as z! 1 (boundary) and y! �1 as z! 1
(horizon). c2

g�z� is given by (14). V1 is a monotonically
increasing function of y (for �GB > 0) with V1�y �
�1� � 0 and V1 � y�2 as y! 0.

Since c2
g is monotonically decreasing for r > rmax, for

large enough ~q, V�y� develops a well and admits meta-
stable states (see Fig. 2). The wave functions of such
metastable states are normalizable at the AdS boundary
and have an in-falling tail at the horizon, corresponding to
quasiparticles in the boundary CFT [35].

Now consider the limit ~q! 1. Since V1 is independent
of ~q, the dominant contribution to the potential is given by
~q2c2

g�z� except for a tiny region y * � 1
~q . Thus in this limit,

we can simply replace V1�y� by V1�y� � 0 for all y < 0 and
V1�0� � �1. Equation (21) can then be written as

 � @
2@2

y �U�y� � �2 ; @ 

1

~q
! 0; (24)

where � was introduced in (17) and (see Fig. 1)

 U�y� �
�
c2
g�y� y < 0
�1 y � 0

: (25)

In the @! 0 limit, we can apply the WKB approximation.
The leading WKB wave function ei��t;r;x3� is just the rap-
idly varying phase of the geometric optics approximation.
The real part of �2 satisfies the Bohr-Sommerfeld quanti-
zation condition (with n some integer)

 ~q
Z 0

yturn

dy
�����������������������
�2 � c2

g�y�
q

�

�
n�

1

4

�
�: (26)

The above equation determines ! as a function of q for
each given n. Taking the derivative with respect to q on
both sides of (26), we find that the group velocity of the
quasiparticles is given by

 vg �
d!
dq
�

�x3���
�t���

; (27)

where �t��� and �x3��� are given by (19) and (20)
respectively. Thus as argued in the paragraph below (20),
vg approaches cg;max > 1 as �! cg;max, violating cau-
sality. In this limit the WKB wave function is strongly
peaked near rmax, reflecting the long time the geodesic
spends there. One can also estimate the imaginary part of
�2 (or !), which has the form e�h���~q with h��� given by
the standard WKB formula. Thus in the ~q! 1 limit the
quasiparticles become stable. Presumably local boundary
operators that couple primarily to the long-lived quasipar-
ticles can be constructed by following [33].
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FIG. 2 (color online). V�z� as a function of z for �GB � 0:2499
and ~q � 500.
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To summarize, we have argued that signals in the bound-
ary theory propagate outside the light cone. In a boosted
frame disturbances will propagate backward in time.
Since the boundary theory is nongravitational, these are
unambiguous signals of causality violation and hence
inconsistency.

Here we observe causality violation in the high momen-
tum limit. This is in agreement with the expectation that
causality should be tied to the local, short-distance behav-
ior of the theory. Also, a sharp transition from causal to
acausal behavior as a function of �GB is possible because of
the limiting procedure ~q! 1 needed in our argument. A
more rigorous derivation of these phenomena using the full
spectral function obtained from the Schrödinger operator
would be desirable.

We argued that, for a (4� 1)-dimensional Gauss-Bonnet
gravity, causality requires �GB �

9
100 . Thus, consistency of

this theory requires

 

�
s
�

16

25

�
1

4�

�
: (28)

This still leaves rooms for a violation of the KSS bound.
We see two possibilities.

First, it could be that Gauss-Bonnet theory with �GB �
9

100 is consistent and appears as a classical limit of a con-
sistent theory of quantum gravity, somewhere in the string
landscape (see [27] for a plausible counterexample to the
KSS bound). Maybe this is how nature works and the KSS
bound can be violated, at least by 36%.

Alternatively, it could be that there is a more subtle
inconsistency in the theory within the window of 0<
�GB �

9
100 . These issues deserve further investigation.
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