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We present the time drift of the cosmological redshift in a general spherically symmetric spacetime. We
demonstrate that its observation would allow us to test the Copernican principle and so determine if our
Universe is radially inhomogeneous, an important issue in our understanding of dark energy. In particular,
when combined with distance data, this extra observable allows one to fully reconstruct the geometry of a
spacetime describing a spherically symmetric underdense region around us, purely from background
observations.
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I. INTRODUCTION

Cosmological data is usually interpreted under the as-
sumption that the Universe is spatially homogeneous and
isotropic. This is justified by the Copernican principle,
stating that we are not located at a favored position in
space. Combined with the observed isotropy, this leads to
a Robertson-Walker (RW) geometry [1], at least on the
scale of the observable Universe.

This implies that the spacetime metric reduces to a
single function of the cosmic time, the scale factor a�t�.
This function can be Taylor expanded as a�t� �
a0 �H0�t� t0� �

1
2q0H2

0�t� t0�
2 � � � � , where H0 is the

Hubble parameter and q0 the deceleration parameter. Low
redshift observations [2] combined with the assumption of
almost flatness of the spatial sections, justified mainly by
the cosmic microwave background data [3,4], lead to the
conclusion that q0 < 0: the expansion is accelerating. This
conclusion involves no hypothesis about the theory of
gravity or the matter content of the Universe [5], as long
as the Copernican principle holds. This has stimulated a
growing interest in possible explanations [5,6], ranging
from new matter fields dominating the dynamics at late
times to modifications of general relativity.

While many tests of general relativity on astrophysical
scales have been designed [7], the verification of the
Copernican principle has attracted little attention, despite
the fact that relaxing this assumption may be the most
conservative way, from a theoretical perspective, of ex-
plaining the recent dynamics of the Universe without in-
troducing new physical degrees of freedom [8].

This possibility that we may be living close to the center
(because isotropy around us seems well established
observationally) of a large underdense region has attracted
considerable interest. In particular, the low redshift (back-
ground) observations such as the magnitude-redshift rela-
tion can be matched [9] by a nonhomogeneous spacetime

of the Lemaı̂tre-Tolman-Bondi (LTB) family (that is,
spherically symmetric solution of Einstein equations
sourced by pressureless matter and no cosmological con-
stant). Unfortunately, this simple extension of the RW
universes depends on two free functions (see below for
details) so that the reconstruction is underdetermined and
one must fix one function by hand. Thus, one needs at least
one extra independent observation to reconstruct the ge-
ometry of an LTB universe. A limitation to this reconstruc-
tion arises because most data lie on our past light cone.
This takes us back to the observational cosmology program
[10] and the question [11] of how to extract as much
information as possible about our spacetime from cosmo-
logical data alone. Among many results, it was demon-
strated [12] that the two free functions of a LTB spacetime
can be reconstructed from the angular distance and number
counts, even though evolution effects make it impossible to
be conclusive [13].

Recently, two new ideas were proposed. First, it was
realized [14] that the distortion of the Planck spectrum of
the cosmic microwave background allows one to test the
Copernican principle. Second, a consistency relation be-
tween distances on the null cone and Hubble rate measure-
ments in RW universes was derived [15], based on the fact
that the curvature is constant; this also serves as an obser-
vational test of the Copernican principle.

In this Letter, we reconsider the time drift of cosmologi-
cal redshift in spacetimes with less symmetries than the
RW universe and we demonstrate how, when combined
with distance data, it can be used to test the Copernican
principle, mainly because observing the thickening of our
past light cone brings new information. As pointed out by
Sandage and then McVittie [16], one should expect to
observe such a time drift in any expanding spacetime.
This may lead to a better understanding of the physical
origin of the recent acceleration [17,18], or to tests of the
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variation of fundamental constants [19]. This measure-
ment, while challenging, may be achieved with extremely
large telescopes (ELT) and, in particular, it is one of the
main science drivers in design of the Cosmic Dynamics
Experiment (CODEX) spectrograph [20]. Our result may
strengthen the scientific case for this project.

We start by introducing observational coordinates,
which allow us to derive the general expression for the
time drift in a spherically symmetric, but not necessarily
spatially homogeneous, universe [see Eq. (6)]. We show
that observation of both the luminosity distance and the
redshift drift allows one to probe the Copernican principle
at low redshifts, when ‘‘dark energy’’ dominates [see the
consistency relation (8)]. We demonstrate that this expres-
sion may be used with distance data to fully reconstruct the
geometry of a LTB spacetime [see Eq. (9)].

II. _z IN A SPHERICALLY SYMMETRIC UNIVERSE

Observational coordinates.—We consider a spherically
symmetric spacetime in observational coordinates
fw; y; #;’g, where w labels the past light cones of events
along the wordline C of the observer, assumed to lie at the
center so that w is constant on each past light cone, with
ua@aw > 0, ua being the four-velocity of the cosmic fluid,
uau

a � �1. y is a comoving radial distance coordinate
specified down the past light cone of an event O on C.
Many choices are possible, such as the affine parameter
down the null geodesics from O, the area distance, or the
redshift; whatever choice we assume on the past light cone
of O, it is specified on other past light cones through being
comoving with the cosmic fluid, i.e., y;aua � 0. (#, ’) are
angular coordinates based at C and propagated parallelly
along the past light cone. The metric in these observational
coordinates is

 ds2 � �A2�w; y�dw2 � 2A�w; y�B�w; y�dydw

� C2�w; y�d�2; (1)

which is clearly spherically symmetric around the world-
line C defined by y � 0. The requirement that the 2-spheres
fw; yg � const behave regularly around C when y! 0
implies [10] that A�w; y� ! A�w; 0� � 0, B�w; y� !
B�w; 0� � 0, and C�w; y� � B�w; 0�y�O�y2�.

There remain two coordinate freedoms in possible re-
scalings of w and y. However, once specified on C, w is
determined on the other worldlines by the condition that
fw � constg are past light cones of events on C. This allows
us to arbitrarily choose A�w; 0�. Also, once specified on
one past light cone, y is determined on all the others
because it is a coordinate comoving with the fluid. This
allows us to choose B�w0; y� for a given value of w � w0.

On each past light cone, the cross-sectional area of a
source is related to the solid angle d�2 under which it is
observed by an observer on C at w � w0 by C2�w0; y�d�2.
This implies that C is the angular distance, DA, i.e.,
DA�y� � C�w0; y�. The distance duality relation [21] then

implies that the luminosity distance is given by DL�y� �
�1� z�2DA. The redshift is given by

 1� z �
�uak

a�emission

�uak
a�observer

�
A�w0; 0�
A�w0; y�

; (2)

where the matter velocity and photon wave vector are
given by ua � A�1�aw and ka � �AB��1�ay , respectively.
We deduce that the isotropic expansion rate, defined by
3H � raua, is given by

 H�w; y� �
1

3A

�
@wB�w; y�
B�w; y�

� 2
@wC�w; y�
C�w; y�

�
: (3)

For the central observer, who sees the Universe isotropic,
H is simply the Hubble expansion rate. At small redshifts,
H�w; y� � @wB�w;0�

B�w;0�A�w;0� �O�y�, so the Hubble constant is
H0 � @wB�w0; 0�=B�w0; 0�A�w0; 0�.

In the particular case of a dust dominated universe, the
acceleration and vorticity vanish and the fluid four-velocity
can be expressed as the gradient of the proper time along
the matter worldlines: ua � �@at. Since we also have
ua � �A@aw� B@ay we deduce that dt � Adw� Bdy
so that A � @wt and B � @yt. The surfaces of simultaneity
are thus given by Adw � Bdy and we have the integra-
bility condition @yA� @wB � 0.

The covariant derivative of ua is therefore of the form
raub � H�gab � uaub� � �ab, where the shear �ab is
symmetric, traceless, and satisfies ua�ab � 0. The scalar
shear �2 � �ab�ab=2 is consequently the only nonvanish-
ing kinematical variable and is given by

 ��w; y� �
2���
3
p

1

A

�
@wB
B
�
@wC
C

�
; (4)

where an arbitrary sign has been chosen. The regularity
conditions imply ��w; 0� � 0, which is expected since the
expansion is observed to be isotropic about the central
worldline.

Expression of the redshift drift.—From the expression
(2), it is straightforward to deduce that _z � �z

�w �w0; y� is
given by

 _z�w0; y� � �1� z�
�
@wA�w0; 0�
A�w0; 0�

�
@wA�w0; y�
A�w0; y�

�
: (5)

Now, we can choose w such that A�w0; 0� � 1. Then, on
our past light cone, we can choose y such that
@w lnB�w0; y� � @w lnA�w0; y�. Note however that such a
choice is not possible for all w. It follows that

 _z�w0; y� � �1� z�H0 �H�w0; y� �
1���
3
p ��w0; y�: (6)

This is the general expression for the time drift of the
redshift as it would be measured by an observer at the
center of a spherically symmetric universe.

Robertson-Walker case.—Since � � 0 for a RW space-
time, Eq. (6) reduces to the standard Sandage-McVittie
formula. Let us consider the RW metric in conformal
coordinates
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 ds2 � a2�����d�2 � d�2 � f2
K���d�2	; (7)

where � is the radial comoving coordinate and fK �
�sin�; �; sinh�� according to the curvature of the spatial
sections. Now, with w � �� � and y � �, this leads to
the form (1) for the metric (7) with A � B � a�w� y� and
C � a�w� y�fK�y�. H is thus constant on each constant
time hypersurface and � � 0 everywhere. Since
@wAjy�const � @�a, Eq. (5) gives _z � �1� z�H0 �H�z�
where we have shifted to cosmic time (dt � ad�), using
1� z � a0=a.

We understand from this exercise why the observational
coordinates are adapted to the computation of _z in an
arbitrary spacetime. They are just a generalization to less
symmetric spacetimes of the conformal coordinates, where
the expression is easily obtained in the RW case.

We also conclude that since the three functions (A, B, C)
are expressed in terms of a unique function, all background
observations depend on some function of H, _z being no
exception.

Consistency relation.—It follows that, in a RW universe,
we can determine a consistency relation between several
observables. From the metric (7) and the relation for
��z� that follows, one deduces that H�1�z� � D0�z��1�
�K0H2

0D
2�z�	�1=2, where a prime stands for @z andD�z� �

DL�z�=�1� z�. This relation is the basis of the test of the
RW structure, as recently proposed in Ref. [15], arguing
there that knowledge of H�z� at different redshifts, from,
e.g., baryon acoustic oscillations or differential age esti-
mates of passively evolving galaxies, could then be used to
check this yields the same value of �K0. Here, we argue
that it can be implemented using _z�z� as an observational
input. Defining
 

Cop�DL�z�; _z�z�; z	 � 1��K0H
2
0D�z�

2

� �H0�1� z� � _z�z�	2�D0�z�	2; (8)

we must have Cop�DL�z�; _z�z�; z	 � 0 whatever the matter
content of the Universe and the field equations, since it
derives from a purely kinematical relation that does not
rely on the dynamics (i.e., the Friedmann equations). This
is a consistency relation between independent observables
that holds in any Robertson-Walker spacetime.

Spherically symmetric spacetimes.—Writing the LTB
metric in observational coordinates requires the solution
of the null geodesic equation, which is in general possible
only numerically. Consider an LTB spacetime with metric

 ds2 � �dt2 � S2�r; t�dr2 � R2�r; t�d�2;

where S�r; t� � R0=
���������������������
1� 2E�r�

p
and _R2 � 2M�r�=R�r; t� �

2E�r�, using a dot and prime to refer to derivatives with
respect to t and r. The Einstein equations can be solved
parametrically as fR�r; ��; t��; r�g � fM�r�E�r� �0���; T0�r� �
M�r�
�E�r�	3=2 ����g, where � is defined by ���� � �sinh��

�;�3=6; �� sin��, and E�r� � �2E; 2;�2E� according
to whether E is positive, null, or negative.

This solution depends on three arbitrary functions
of r only, E�r�, M�r�, and T0�r�. Their choice determines
the model completely. For instance, �E;M; T0� �
��K0r2;M0r3; 0� corresponds to a RW universe. One can
further use the freedom in the radial coordinate to fix one of
the three functions at will so that one effectively has only
two arbitrary independent functions. Assume we fix M�r�.
We want to determine fE�r�; T0�r�g to reproduce some
observables on our past light cone. This can be represented
parametrically as fr�z�; E�z�; T0�z�g.

Let us sketch the reconstruction and use r as the inte-
gration coordinate, instead of z. Our past light cone is
defined as t � t̂�r� and we set R�r� � R�t̂�r�; r	. The

time derivative of R is given by _R�t̂�r�; r	 �R1 ����������������������������������������������
2M0r3=R�r� � 2E�r�

p
. Then we get R0�t̂�r�; r	 �

R2�r� � �fR�r� � 3�t̂�r� � T0�r�	R1�r�=2gE0=E �
R1�r�T00�r� � R�r�=r. Finally, more algebra leads to
_R0�t̂�r�; r	 � R3�r� � fR1�r� � 3M0r3�t̂�r� � T0�r�	=
R2�r�gE0�r�=2E�r� � M0r3T00�r�=R

2 � R1�r�=r. Thus,
_R, R0, and _R0 evaluated on the light cone are just functions

of R�r�, E�r�, T0�r�, and their first derivatives. Now, the
null geodesic equation gives that

 

dt̂
dr
� �

R2�r����������������������
1� 2E�r�

p ;
dz
dr
�

1� z���������������������
1� 2E�r�

p R3�r�;

and

 

dR
dr
�

�
1�

R1�r����������������������
1� 2E�r�

p
�
R2�r�:

These are three first-order differential equations relating
five functions R�r�, t̂�r�, z�r� E�r�, and T0�r�. To recon-
struct the free functions we thus need two observational
relations. R�z� � DA�z� is the obvious choice. Then, from
_z�z�, we have the new relation

 

1

9

�
R3

R2
�

R1

R

�
2
�

�
_z� �1� z�H0 �

1

3

�
R3

R2
� 2

R1

R

��
2
:

(9)

It was shown [9] that the observedDL�z� can be reproduced
from the function T0�r� assuming E � 0, or from the
function E�r� assuming T0 � 0. Here, we have shown
that fE�r�; T0�r�g can be completely reconstructed from
the data without assumptions.

III. DISCUSSION

In this Letter, we have shown that observation of both
the luminosity distance and time drift of the redshift as a
function of z allows one to construct a test of the
Copernican principle. We have derived the general expres-
sion for _z�z� in a spherically symmetric spacetime [see
Eqs. (5) and (6)]. This extends the standard computation
which was restricted to RW spacetimes and was extended
to almost RW spacetimes only recently [22].
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As a by-product, this also allowed us to derive the
consistency relation (8) between the observed DL�z� and
_z�z�, thereby extending the result of Ref. [15] to an alter-
nate observable. That is, while H�z� characterizes the local
isotropic expansion rate, _z�z� gives access to the expansion
between us and a source. In RW models these are trivially
related but in general the shear enters these observables
differently, thereby presenting a test of the Copernican
principle using only background observations. We have
shown that we can extract the shear as a function of z
and demonstrated that it allows one to close the recon-
struction problem for a LTB spacetime.
DL�z� can be measured from the observation of type Ia

supernovae, particularly with actual projects such as
JDEM, up to redshifts of order 1.5. _z�z� has a typical
amplitude of order �z
�5� 10�10 on a time scale of
�t � 10 yr, for a source at redshift z � 4. This measure-
ment is challenging, and impossible with present-day fa-
cilities. However, it was recently revisited [23] in the
context of ELT, arguing they could measure velocity shifts
of order �v
 1–10 cm=s over a 10 yr period from the
observation of the Lyman-� forest. It is one of the science
drivers in design of the CODEX spectrograph [20] for the
future European ELT. The study of the precision to which
we can check the Copernican principle with these two data
sets is beyond the scope of this Letter. Indeed, many
effects, such as proper motion of the sources, local gravi-
tational potential, or acceleration of the Sun may con-
tribute to the time drift of the redshift. It was shown [22],
however, that these contributions can be brought to a
0.1% level so that the cosmological redshift is actually
measured.

Future high precision data may thus allow a test of the
Copernican principle, even though observations are local-
ized on our past light cone. While important in its own right
for understanding the foundations of our cosmological
model, it is also critical for our understanding of the
acceleration of the Universe—it will permit us to be con-
fident that any such acceleration is not simply a misinter-
pretation of the data because of incorrectly assuming the
geometry of our Universe at low redshift.
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