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The blackbody nature of the cosmic microwave background (CMB) radiation spectrum is used in a
modern test of the Copernican principle. The reionized universe serves as a mirror to reflect CMB
photons, thereby permitting a view of ourselves and the local gravitational potential. By comparing with
measurements of the CMB spectrum, a limit is placed on the possibility that we occupy a privileged
location, residing at the center of a large void. The Hubble diagram inferred from lines of sight originating
at the center of the void may be misinterpreted to indicate cosmic acceleration. Current limits on spectral
distortions are shown to exclude the largest voids which mimic cosmic acceleration. More sensitive
measurements of the CMB spectrum could prove the existence of such a void or confirm the validity of the
Copernican principle.
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Introduction.—The observed accelerating expansion of
the Universe [1,2] poses deep questions for cosmology. Is
the Universe filled by some new, exotic dark energy, or is
one of the basic tenets of the standard model of cosmology
invalid? One such tenet is the cosmological principle, the
assumption of approximate homogeneity and isotropy of
matter and radiation throughout the Universe, which is
known to be partly satisfied. The Universe is observed to
be very nearly isotropic on our celestial sphere, on the basis
of the near-isotropy of the cosmic microwave background
(CMB) temperature pattern [3], and is observed to be
approximately homogeneous across the distances probed
by large-scale structures [4]. Yet, radial homogeneity on
scales * 1 Gpc, a cosmic version of the Copernican prin-
ciple, remains to be proven. If the assumption of radial
homogeneity is relaxed, and if we observe from a preferred
vantage point, then it may be possible to explain the
apparent cosmic acceleration in terms of a peculiar distri-
bution of matter centered upon our location [5]. In fact,
models of the Universe consisting of a spherically sym-
metric distribution of matter, mathematically described by
a Lemaitre-Tolman-Bondi spacetime [6], have been shown
to produce a Hubble diagram which is consistent with
observations. These models require no dark energy, and
locally resemble a matter-dominated low-density Universe
or void. The observed near-isotropy constrains us to oc-
cupy a very special location, at or near the center of the
void, in violation of the Copernican principle. Although the
Copernican principle may be widely accepted by fiat, it is
imperative that such a foundational principle be proven.

We propose to test the Copernican principle, to verify
radial homogeneity and thereby constrain nonaccelerating
void cosmological models. The test follows a similar argu-
ment by Goodman [7], that constrains distortions of the
CMB blackbody spectrum produced by anisotropic scat-
tering [8]. The CMB is initially thermal (blackbody), but
small inhomogeneities cause variations in the temperature
at different locations and along different lines-of-sight that

preserve the blackbody spectrum. However, scattering of
this anisotropic radiation into our line-of-sight by ionized
gas produces observable spectral distortions.

Here we are interested in anisotropies caused by a large,
local void. Such a structure causes ionized gas to move
outward, in motion relative to the CMB frame which leads
to a Doppler anisotropy in the gas frame. The gravitational
potential of such a structure also leads to a Sachs-Wolfe
(SW) effect for photons which originate inside of the void
and scatter back toward us. The geometry of these effects is
illustrated in Fig. 1. A large void, or any other non-
Copernican structure, will lead to large anisotropies in
other places which will be reflected back at us in the
form of spectral distortions. Hence, deviations from a
blackbody spectrum can indicate a violation of the
Copernican principle. In essence, we use the reionized
Universe as a mirror to look at ourselves in CMB light. If
we see ourselves in the mirror it is because ours is a
privileged location. If we see nothing in the mirror, then
the Copernican principle is upheld.

Spectral distortions.—The distortion of the CMB black-
body spectrum due to scattering by anisotropic CMB ra-
diation is [8] u�n̂� � 3

16�
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0 dz
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0; n̂; z��2, where �T=T�n̂0; n̂; z� is the
CMB temperature anisotropy in the direction n̂0, as ob-
served at redshift z in the direction n̂ from the central
observer, and � is the optical depth. For cosmic voids
extending out to redshifts z & 1, reflections back at us
may occur up to z & 3 (see Fig. 1). The optical depth to
Thomson scattering is small, so that it is appropriate to
consider single scattering. Since the mean CMB tempera-
ture is not known a priori, but rather is fit to the observa-
tions, u is observationally degenerate with the Compton
y-distortion parameter according to the relation u � 2y.
(Compare Refs. [8,9] for details.) Thus observational con-
straints on 2y can be treated as constraints on u.

We consider a low-amplitude void embedded in a flat,
Einstein–de Sitter (EdS or � � 1) matter-dominated
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Universe. The gravitational potential due to the void, ��x�,
is a function of comoving position, x, with Earth near
x � 0. The temperature anisotropy can be divided into a
Sachs-Wolfe and Doppler term �T

T �n̂
0; n̂; z� � �T

T jSW �
�T
T jDoppler where �T

T jSW �
1
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, where
xscatter � Dco

A �z�n̂, xrec � xscatter � �Dco
A �zrec� 	Dco

A �z��n̂
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Dco
A �z� � 2 c

He0
�1	 1�������

1�z
p �. Here Dco

A is the comoving

angular-diameter distance, and the redshift of recombina-
tion, zrec, will be approximated by 1 for simplicity. The
Hubble constant at the present time in the background
cosmology, outside the void, is He0, whereas H0 >He0 is
the Hubble constant at the center of the void.

We neglect the integrated Sachs-Wolfe (ISW) effect,
meaning that a CMB photon does not contribute to the u
distortion simply because it passes across the void. This
approximation is justified for a low-amplitude void in the
EdS background where the ISW is a second-order effect.
For an increasingly nonlinear void we expect a larger ISW

contribution to the anisotropy and thus to the spectral
distortion, but we do not expect that the ISW will ever be
the dominant contributor to u for the small voids needed to
mimic an accelerating Universe.

The run of optical depth with redshift is taken from the
unperturbed, background cosmology. We assume a rapid
reionization at z � zrei such that d�dz � �e0

������������
1� z
p

��zrei 	

z� and �e0 �
3He0�b0�Tc

8�GmH
�1	 1

2YHe�, where ��x� is the
Lorentz-Heaviside step function, �T , mH, �b0 and YHe

are the Thomson cross-section, the hydrogen mass, the
current baryonic mass density in units of the critical den-
sity, and the helium mass fraction, respectively. We use
�b0h

2 � 0:022 (h 
 He0=100 km=s=Mpc), YHe � 0:24.
For H0 we use the locally-measured expansion rate:
73 km=s=Mpc (e.g., Refs. [10,11]). Where needed we
use the WMAP3 [12] value, �obs � 0:09, for the optical
depth to the surface of last-scattering which in our model
gives zrei � 11. These numbers specify the cosmic evolu-
tion of the density of scatterers.

Void model.—We cannot compute u for every possible
void profile, so we focus our attention on a particularly
simple, two parameter class of spherically symmetric
voids, sometimes known as a Hubble bubble: ��R� �
�0�1	

R2

R2
V
���RV 	 R�. The parameters �0, RV give the

void amplitude and comoving radius. The reason it is
called a Hubble bubble is that the Hubble parameter is
uniform inside and outside the void, but the values differ.
Nonlinear growth leads to the appearance of a shell of mass
overdensity which compensates the underdensity in the
void at the boundary of the outer and inner region. This
compensating shell has a complicated density and velocity
structure, which is safely ignored in linear theory. Away
from the compensating shell this model resembles an open
(�0 < 1) FRW cosmology embedded inside a flat EdS
cosmology. Any smooth spherical void which is asymptoti-
cally EdS at large R and has finite density in the center can
be thought of in this way; what differs is the radial profile
of the transition between the two FRW spacetimes. The
Hubble bubble is the limit of a sharp transition between the
interior and exterior regions.

The Hubble bubble amplitude can be expressed in terms
of the present day density parameter, �0, inside the void as
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3
20 �He0RV�
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3=2
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can be expressed as a function of the redshift at the edge
of the void, zedge. This relationship is complicated by finite
peculiar velocities and nonlinear clustering of the compen-
sating shell, but to first order is simply RV � 2�c=H0��

�1	 1=
�������������������
1� zedge

p
�. Finally, the exterior Hubble parame-

ter, He0, differs from the interior value, H0. At the same
‘‘time since bang’’ they are related as H0

He0
�

3
2

����������
1	�0
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	�0sinh	1�
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�0

q
�

�1	�0�
3=2 . Note that a small jump in the

Hubble parameter corresponds to a large jump in the
density parameter.

FIG. 1 (color). Illustrated is a cross-section through a model
Universe with the observer (O) at the center of a void, in
violation of the Copernican principle. CMB photons traveling
in any direction may Thomson scatter off reionized gas. The
observed spectrum will be a mixture of blackbody spectra with
different (anisotropic) tempertures, producing a distorted black-
body. The yellow lines represent: incoming beams of unscat-
tered, primary CMB photons (dashed); incoming beams of
scattered photons (thin), and the observed beams (thick) for
representative scattering centers with last-scattering surfaces
represented by the dark circles. A is in the Doppler zone:
Beams 1–3 experience the same SW temperature shift, introduc-
ing no anisotropy. However, gradients in the void gravitational
potential cause the gas to move with respect to the CMB frame,
so A sees a differential Doppler anisotropy, resulting in spectral
distortions. B is in the reflection zone: B is at rest with respect to
the CMB frame and sees no Doppler anisotropy. However, some
of the incoming photons, e.g., beam 4, originate inside the void
so there will be an anisotropic SW temperature shift, leading to
spectral distortions.
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The gas at different redshift must satisfy several criteria
in order to contribute to the u distortion. A patch of gas
at redshift z must be ionized, on our past light cone, and
see an anisotropic �T from the void. We refer to the re-
gion z > zrei as the neutral zone because the gas is not
ionized, producing no contribution to u. Even if the gas
is ionized, if z > zmax 
 3� 4zedge then the gas is not
in causal contact with the void so �T � 0. We refer to
the range �2

������������������
zmax � 1
p

	 1�=�
������������������
zmax � 1
p

	 1�2 � z � zmax

as the reflection zone; the last scattering surface of gas
in this range intersects the interior of the void so that,
depending on the scattering angle, some CMB pho-
tons will reflect back towards us with anisotropy �TSW.
Gas which is on our past light cone and within the void
will see �TDoppler, which we call the Doppler zone.

Five classes of void sizes are identified depending on
how the different zones overlap (assuming zrei > 8): small
(zedge �

5
4 ) whereby the neutral zone, reflection zone, and

Doppler zone are all disjoint; big ( 5
4 < zedge �

1
4 �zrei 	 3�)

whereby the Doppler zone and reflection zones overlap, but
neither overlap the neutral zone; large ( 1

4 �zrei 	 3�<
zedge � zrei) in which the Doppler and reflection zones
overlap, as do the reflection and neutral zones, but the
neutral zone does not overlap the Doppler zone; huge
(zedge > zrei) in which the neutral, reflection, and Doppler
zones all overlap; and superhorizon (RV > 2c=H0) for
which the void encompasses the entire observable
Universe. This classification is not restricted to the
Hubble bubble void profile, but applies to any void profile
with a sharp edge at z � zedge. As we shall see it is only the
small voids that can explain the current SNe data.

In the linear perturbation approximation for this void
model the spectral distortion u, illustrated in Fig. 2, is
proportional to � 1

3c2 �0�
2�e0 and may be decomposed as

u � �e0�
�0

3c2�
2�UD �US �UDS� where the three terms are,

respectively, the contribution from gas where the tempera-
ture anisotropies are Doppler only (subscript D), Sachs-
Wolfe only (subscript S), and a combination of the two
(subscript DS). All of these can be expressed analytically.
For small and big voids u does not depend on zrei but only
on the dimensionless size parameter r 
 1

2
H0

c RV �
1	 1���������

1�zV
p . The general expression for u is long and we

do not give it here. For small voids, which are the most
relevant, we find Usmall

D � 56
5

1
r3 �1� 1

1	r�
2
r ln�1	 r�� and

Usmall
S � Usmall

D and Usmall
DS � 0. Note that the limit zedge !

1 corresponds to an open Universe, such that u! 0.
Although this is not generic, being a peculiarity of the
Hubble bubble void profile, our main conclusions will
not be affected.

The angular-diameter distance DA is a solution of the
Dyer-Roeder [13] equation, d

dz ��1� z�
2H d

dzDA��
3
2 �HDA � 0. In the interior open and exterior flat
cosmologies the respective solutions are DA�z<zi��
2c
H0
�2	�0�1	z�	�2	�0�
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1�z�0

p
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�1�z�3=2�, where the coefficients

C1, C2 are set by the continuity Dint
A �zi� � Dext

A �ze�, and
the jump in dDA=dz as determined by integrating the Dyer-
Roeder equation across the delta-function density spike at
the void edge. The radial velocity drop, �v, at the void
edge means a double-valued DA�z� for z 2 �ze; zi� and
1�zi
1�ze
�

����������
c��v
c	�v

q
. This drop also gives the Doppler anisotropy

at the edge. To get zi and ze we use the approximations
�v
c �

�T
T Doppler�zedge; n̂; n̂� and zedge �

1
2 �zi � ze�. The lu-

minosity distance versus redshift, also known as the
Hubble diagram, is �1� z�2DA�z�.

Constraints.—The u distortion is evaluated according to
the procedure described above. We are primarily interested
in small and big voids which extend out to z
 1. Hence
our constraints are independent of zrei. The other cosmo-
logical parameters only enter into the overall normalization
of u through �e0. What remains are the void size and
amplitude: (zedge, �0).

The best current bound on u is due to FIRAS [14–16]
which constrains y < 15� 10	6 or u < 3� 10	5 at 95%
C.L. The corresponding constraint on void parameters are
shown in Fig. 3. Also shown are constraints for projected
bounds y < 10	6, 10	7. The limits are expected to improve
[17,18], but a y distortion from the IGM would likely mask
the signal discussed here if u & 10	6 [19].

The results rule out large voids with large density con-
trasts—the most egregious violations of the Copernican
principle. The larger the void, the smaller the density
contrast must be in order to pass the test. Although not
shown, the constraints become weaker for huge (nearly
superhorizon sized) voids. Since observationally �0 &

0:3, only small bubbles with zedge < 0:9 are allowed.

FIG. 2 (color). The dependence of the spectral distortion, u, on
the size of a Hubble bubble parameterized by zedge, is shown in
units of uscale 
 �e0��0=�3c

2��2�1� zedge�=�
�������������������
1� zedge

p
	 1�.

The thick curves show the various contributions to u. The over-
lap contribution is due to the Doppler and Sach-Wolfe cross
term. The thin curves correspond to the case in which zrei ! 1.
For small voids the Doppler contribution dominates, and the
value of zrei is unimportant.
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Improving the constraint to y < 10	6 would lower this
bound to zedge & 0:3 or a radius of 1 Gpc. These constraints
are consistent with the very small Hubble bubble proposed
in Ref. [20], with H0 	He0 
 0:1H0 and zedge * 0:025.

The observed SNe data can be compared with our model
Hubble diagram to further constrain void parameters.
Using the SNe data [21,22] compiled in Ref. [23], we
computed the likelihood of �0 and zedge. The best-fit
parameter combinations give �2 � 207 for the 192 SNe
magnitudes (within 3� of the best-fit �CDM model based
on a ��2 test, for a family of models with a sufficient
number of parameters to encompass both � and the void).
Voids which explain the observed Hubble diagram have
low density and large size, zedge 
 1 (radii 
2:5 Gpc).
However, as shown in Fig. 3, combining the SNe data
with current limits on u (�2 � 225, 250 for 191 degrees
of freedom), we find that nearly all such voids are ruled out.
These specific constraints only apply to the Hubble bubble
class of models, which also suffers from other flaws not
mentioned here. Other models, perhaps with a higher
central density or smaller radius, may evade this test. We
plan to apply this test to more general and more realistic
void profiles.

An improvement in the bound on u by an order of
magnitude may confirm or refute a wider variety of such
voids as an explanation of the dark energy phenomena. Yet,
the u-distortion test presented here is more general than the
question of dark energy. Future pursuit of this test will help
improve our view of the Universe on the largest scales.
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