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Planar cellular networks are made of polygonal cells usually having an average of six sides and trivalent
vertices. We analyze the topological properties of spoke patterns observed in the convection of highly
viscous fluids. The competition between ascending and descending columns of fluid generates dual
networks where on average cells are four sided and vertices tetravalent. This observation identifies a new
class of dual networks satisfying a mutual Voronoi relation. The metric of the pattern is dominated by the
distance between nearest neighbors vertices of opposite species.
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Cellular patterns form two-dimensional (2D) space di-
viding networks where the plane is divided into adjacent
and nonoverlapping polygonal cells by a set of lines form-
ing a reticulum [1]. Among space dividing networks,
Voronoi diagrams are widely used to describe structures
such as basins of predation in ecosystems, the texture of
giraffe hide, grain boundaries in materials, and urban dis-
tricts, just to mention a few examples. The applications of
Voronoi diagrams span a variety of fields as different as
archaeology, physics, crystallography, linguistics, geology,
ecology, marketing, and finance [2,3]. Many topological
properties of natural space dividing networks are strongly
universal and system-independent. The most ubiquitous
topological feature is perhaps trivalency [4]. That is, for
the vast majority of space dividing networks, three cell
edges join at a vertex, and this further implies that the cells
are on average hexagonal.

In this work we investigate the topological properties of
the spoke patterns generated by convection in fluids. The
patterns are made up of the staggered superposition of two
cellular networks like the black and white [B (W)] ones
shown in Fig. 1. We show that, at variance with the usual
trivalent networks, each network is made up by polygonal
cells having an average of four sides and tetravalent verti-
ces. The B (W) networks are dual; that is, each vertex of a
network is surrounded by a cell of the other network and
vice versa. We identify a model for the mutual configura-
tion of the two networks starting from the following simple
observation: points contained inside a cell are closer to the
dual vertex at its center than to any other dual vertex.
According to the definition of Voronoi domain [2], the
cell can be identified with the Voronoi domain associated
with the dual vertex. Therefore, each network is the
Voronoi diagram generated by vertices of the dual network
and the two networks are in a mutual Voronoi relation
(MVR). The MVR identifies a new class of Voronoi dia-
grams with potential applications to the modeling of cel-
lular patterns generated by two mutually interacting
populations. In particular, the newly found MVR structures
could be useful to achieve a better understanding of con-

vection in the Earth’s mantle. This is due to the fact that
spoke patterns generated in laboratory experiments on
convection in viscous fluids have been recognized to rep-
resent a model system mimicking at much smaller length
scales some of the features of convective structure inside
the Earth’s mantle [5]. This has been confirmed by recent
numerical simulations on mantle convection which have
predicted the presence of spoke pattern structures in the
lower mantle of the Earth [6]. We point out that in general
our laboratory experiments exhibit many simplifications
when compared to convection in a real planet. Numerical
simulations of planetary convection predict that the spheri-
cal geometry of the mantle, the strong dependence of its
viscosity from the temperature, and the presence of tec-
tonic plates or of a rigid lid are all factors affecting the
actual structure of the convective planform [7–10], which
in general deviates from that of a spoke pattern. These
factors are not present in our model system.

FIG. 1. Shadowgraph image of spoke pattern convection at a
solutal Rayleigh number Ras � 7� 106. The image corresponds
to a square area of size 10:6 mm� 10:6 mm in real space. The
sample thickness corresponds to 0.98 mm.
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Spoke patterns are observed in high Rayleigh number
convection (either thermal or solutal) of high Prandtl num-
ber fluids [5,11–15] and in the bioconvection of popula-
tions of bacteria [16–18]. Rayleigh-Bénard convection,
besides being affected by the geometry of the sample, is
completely determined by two dimensionless numbers: the
Rayleigh number Ra � �g�Td3=���� and the Prandtl
number Pr � �=� [19], where g is the gravitational accel-
eration, �T the temperature difference, � the thermal
diffusivity, � the thermal expansion coefficient, � the kine-
matic viscosity, and d the sample thickness. Convection
can also be induced by creating a gravitationally unstable
concentration profile inside a binary mixture. This can be
attained by taking advantage of the Soret effect [20]: a
thermal gradient induces a mass flow inside a binary
mixture, which in turn promotes the formation of a con-
centration profile. It can be shown [21,22] that there exists
a complete analogy between Rayleigh-Bénard convection
and Soret driven convection, where Ra and Pr are replaced
by the solutal Rayleigh number Ras � �g�cd3=�D�� and
the Schmidt number Sc � D=�. Here � is the solutal
expansion coefficient, D the mass diffusion coefficient,
and �c the Soret induced concentration difference across
the sample thickness.

In this work we take advantage of the peculiar properties
of a suspension of silica nanoparticles in water, commer-
cially known under the brand name LUDOX®. The nano-
particles have a radius of about 11 nm and their weight
fraction concentration is 4.1%. At this concentration, the
suspension has a negative Soret coefficient ST �
�3:41 K�1, measured at 25 �C. The mass diffusion coef-
ficient D � 2:2� 10�7 cm2=s is much smaller than the
thermal diffusivity � � 1:48� 10�3 cm2=s. This implies
that the high Ras needed to induce spoke pattern convec-
tion can be attained by imposing a modest temperature
gradient to the suspension by heating from above.
Moreover, the use of a suspension of nanoparticles allows
one to attain a high Schmidt number Sc � 3:7� 104. A
horizontal layer of the suspension is contained within a
Rayleigh-Bènard thermal gradient cell [23]. The sample
thickness can be changed from 1 mm up to 2.9 mm. The
applied temperature difference can be changed from a
fraction of a K up to about 20 K. The corresponding range
of Ras is 106–109. The convective flow is visualized by
means of a shadowgraph technique [24], where a colli-
mated, vertical (parallel to the thermal gradient) light beam
impinges on the sample through transparent sapphire win-
dows. The intensity of the shadowgraph image is propor-
tional to the local perturbations of index of refraction of the
sample, in turn determined almost entirely by the concen-
tration of the colloidal particles, transported by convection
flow. Figure 1 shows a shadowgraph image of a spoke
pattern obtained at Ras � 7� 106. The B (W) vertices
correspond to upwelling (downwelling) columnar flow of
poorly (highly) colloid concentrated sample. The B (W)

edges correspond to ridges located near the bottom (top)
plate that convey fluid into the columnar flows. Therefore
the structure of the pattern is three dimensional, and im-
ages like Fig. 1 show a 2D projection of the pattern onto a
horizontal plane. Quite remarkably, the observed convec-
tive flow takes the form of two dual space dividing net-
works, where the mean number of sides per cell hsi and the
mean number of edges joining into vertex hzi are close to 4.
This is apparent from Fig. 2, which shows the cell shape
frequency distribution and the vertex coordination fre-
quency distribution of the networks shown in Fig. 1. B
(W) columns in the histograms refer to the B (W) networks
of Fig. 1. Histograms are both peaked at four edges.

A first understanding of the topological properties of the
spoke pattern can be attained by means of Euler’s formula
(1). Euler’s formula relates the average number of sides per
cell hsi and the average number of edges joining into a
vertex hzi. For a planar space dividing networks charac-
terized by a large number of cells it states that
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In a usual space dividing network with z � 3 the for-
mula implies that hsi � 6. A dual space dividing network
can be constructed from the primal one by taking one point
inside each cell and by joining points located within
neighboring cells. By construction hs0i � hzi and hz0i �
hsi, where the prime denotes the dual network [2]. This
implies that for a trivalent network the dual network is
made entirely by triangular cells with hzi � 6. In the case
of a spoke pattern Euler’s formula applies independently to
the B (W) polygonal networks. Since each B vertex is
contained inside a W cell, and vice versa, the B and W
networks are dual. From Fig. 1 it is apparent that occa-
sionally more than one B vertex is contained inside a W
cell, and vice versa. However, these slight deviations from

0

1

C
S

P
S

0

1

3 4 5 6 7

V
C

P

FIG. 2. Cell shape probability (CSP) distribution and vertex
coordination probability (VCP) distribution of the B (W) cellular
patterns shown in Fig. 1. The B (W) bars correspond to B (W)
polygons and vertices in Fig. 1. The total numbers of cells are
CB � 83 and CW � 83. The total numbers of vertices are VB �
83 and VW � 73. Cells and vertices were identified by visual
inspection of the image. Incomplete cells near the boundary of
the image were not considered in the analysis.
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duality do not alter significantly the topological properties
of the patterns. Duality implies that hsWi � hzBi and
hsBi � hzWi. Moreover, the two networks in a spoke pat-
tern are statistically equivalent; that is, their topological
variables are distributed in the same way. Therefore hsWi �
hsBi and hzWi � hzBi. Duality and statistical equivalence
when joined with Euler’s formula imply that hsWi �
hsBi � hzWi � hzBi � 4. This result is in good agreement
with the experimental values obtained from the distribu-

tions in Fig. 2, where the average values correspond to
hsBi � 4:20, hsWi � 4:04, hzBi � 3:83, and hzWi � 3:95.
Euler’s formula is obeyed exactly by the two networks in
Fig. 1 as 1=hsBi � 1=hzBi � 0:50 and 1=hsWi � 1=hzWi �
0:50.

The most striking topological feature of the spoke pat-
tern is that, given the positions of the vertices of the net-
work of one species, one is able to reconstruct the full
structure of the other network. This can be achieved by
using the well-known Voronoi tessellation algorithm [2]. In
2D Voronoi tessellations, the plane is divided into polygo-
nal cells which are generated by a set of points. The cells
are composed by points that are closer to the corresponding
generator than to any other generator. The network shown
with a solid white line in Fig. 3 shows a reconstruction of
the W network obtained by joining the white vertices of a
spoke pattern with segments. The dashed-line network of
Fig. 3 shows a reconstruction of the same W network
obtained by using the B vertices, whose position is as-
signed by visual inspection, as generator points of a
Voronoi diagram. Although some discrepancies are appar-
ent in Fig. 3, the Voronoi reconstruction mirrors quite
closely the original W network. A similar reconstruction
of the B network can be obtained from the Voronoi diagram
generated by the W vertices. Quite interestingly, spoke
pattern convection represents one of the few experimental
systems where both the Voronoi diagram and its generator
points can be visualized directly at the same time. Figure 3
provides clear evidence that each network in a spoke
pattern is generated by the Voronoi tessellation originated
by the vertices of the dual network. We will refer to this
property as mutual Voronoi relation. The MVR identifies a
new class of degenerate Voronoi diagrams where the dual
diagram has the same topological properties of the primal

FIG. 3 (color online). Shadowgraph image of the spoke pattern
shown in Fig. 1 superimposed to two reconstructions of the white
mesh of the diagram. The solid line white network represents a
reconstruction of the white mesh obtained by joining the white
vertices of Fig. 1. The dashed-line network represents the
Voronoi reconstruction of the white mesh using the black verti-
ces of Fig. 1 as generator points.
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FIG. 4 (color online). (a) Computer-generated MVR diagram showing the symmetries in the position of neighboring vertices of the
B (W) networks. The dotted line represents the rhomb tiling obtained by joining nearest neighbors vertices of opposite species.
(b) Central portion of Fig. 1 superimposed to a reconstruction of the rhomb tiling (dotted line). The reconstruction has been obtained
by joining nearest neighbors vertices of different species. The tiles have a quadrilateral shape with perpendicular diagonals.
(c) Frequency distributions for the distance d between neighboring vertices. The square points correspond to the distribution for
the distance between vertices of unlike species BW, while the black and white circle points correspond to like species. Data points
represent the probability of finding a distance between vertices in the range marked by the vertical dotted lines. The range spans
0.2 mm and represents the intrinsic resolution determined by the size of the vertices in Fig. 1.
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one. Figure 4(a) shows two networks in mutual Voronoi
relation generated for the purpose of illustration. The MVR
implies that each B edge acts as a symmetry axis for a W
edge and vice versa. The set of four vertices at the end of
the two edges forms a rhomb. Therefore, an equivalent
tessellation of the plane involving just a single space
dividing network can be constructed by tiling the plane
with rhombs. The rhomboidal tessellation is shown by the
dotted line in Fig. 4(a). Since every couple of adjoining
rhombs share a side, the side of the rhombs has to be equal
for all the tiles in the diagram. Therefore, the diagram is
dominated by one characteristic length scale, represented
by the distance between nearest neighbors vertices of
different species.

In order to assess how well the experimental data are
described by the ideal rhomboidal tessellation we have
attempted a reconstruction of the rhombic network from
the central portion of Fig. 1 by joining neighboring vertices
of different species. The reconstructed network, shown in
Fig. 4(b), is entirely made by quadrilateral cells. All the
cells are convex, with the exception of two chevron-shaped
ones. The diagonals of all cells, represented by one black
edge and one white edge of the spoke pattern, are perpen-
dicular. To verify whether the quadrilateral tessellation
exhibits a dominant length scale we have calculated the
frequency distributions for the length of sides and diago-
nals of the quadrilaterals. The distributions have been
evaluated by measuring the distances dBW between neigh-
boring vertices of different species and the distances dBB
and dWW between neighboring vertices of like species for
the pattern shown in Fig. 1. The distribution for dBW is
represented by the square points in Fig. 4(c). The black
(white) circle points in Fig. 4(c) show for comparison the
frequency distributions for dBB and dWW . Figure 4(c)
clearly shows the presence of sharp peak of width �BW �
0:13 mm for dBW and of two less pronounced peaks of
width �BB � 0:27 mm and �WW � 0:26 mm for dBB and
dWW , respectively. Therefore, the frequency distribution
for the side of the quadrilaterals is about a factor of 2
narrower than that for their diagonals and dBW represents
a dominant length scale for the spoke pattern.

In summary, we studied the spoke pattern exhibited by a
highly viscous convecting fluid at high Rayleigh numbers.
We identified a novel class of patterns made up by two
staggered networks, where each network can be obtained
from the other one by means of a Voronoi construction.
This unusual mutual Voronoi relation is shown to be dra-
matically different from the most known case of generic
Voronoi diagrams: on the average, the network cells are
quadrilateral, the vertices tetravalent, and some short-range
order must be present.

We believe that the predictive nature of our findings
might contribute to achieve a better understanding of con-
vection in the lower mantle of the Earth, where the spoke

pattern has been observed as a result of complex 3D
numerical simulations [6].
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