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Recently, neutron scattering data on powder samples of Zn paratacamite, ZnxCu4�x�OH�6Cl2, with
small Zn concentration has been interpreted as evidence for valence-bond solid and Néel ordering [S.-H.
Lee et al., Nat. Mater. 6, 853 (2007)]. We study the classical and quantum Heisenberg models on the
distorted kagome lattice appropriate for Zn paratacamite at low Zn doping. Our theory naturally leads to
the emergence of the valence-bond solid and collinear magnetic order at zero temperature. Implications of
our results to the existing experiments are discussed. We also suggest future inelastic neutron and x-ray
scattering experiments that can test our predictions.
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Introduction.—The hallmark of frustrated magnets is the
existence of macroscopically degenerate classical ground
states. It is believed that quantum fluctuations about such a
highly degenerate manifold may lead to unexpected quan-
tum ground states. Proposals for emergent quantum phases
include various quantum spin liquid and valence-bond
solid (VBS) phases and there has been tremendous
progress in a theoretical understanding of these phases
during the last decade [1]. On the experimental front, ideal
materials with spin-1=2 moments (without orbital degen-
eracy) on frustrated lattices have just become available,
providing great opportunities for testing old and new theo-
retical proposals [2–5].

One of the prime examples is a series of recent experi-
ments [5–10] on Zn paratacamite, ZnxCu4�x�OH�6Cl2,
where Cu2� ions carry spin-1=2 moments. Most of the
attention has focused on the x � 1 limit [5], but the present
Letter will address the x � 0 limit [6] when no Zn is
present. An important advantage of the x � 0 limit is the
absence of stoichiometric disorder, which is a serious
complication in the interpretation of experiments in the
x � 1 limit.

At x � 1 (herbersmithite), the idealized structure with-
out stoichiometric disorder, has the Cu moments residing
only on the layered kagome lattices. Remarkably, in the
experiment no magnetic ordering has been found down to
50 mK even though the Curie-Weiss temperature is
�CW � �300 K [5,7,8]. This has raised the hope that the
quantum ground state of this system may be a quantum
spin liquid [11–13]. As mentioned, however, the presence
of stoichiometric disorder makes the interpretation of the
low temperature data a difficult task.

The situation is very different near x � 0, where there is
no intrinsic stoichiometric disorder. The magnetic lattice of
the Cu2� spin-1=2 moments form stacks of alternating
(distorted) kagome and triangular lattices. The lattice
undergoes a structural change around x� 0:33; mono-
clinic (rhombohedral) structure for x < 0:33 (x > 0:33)
[6,10]. As a result, the magnetic lattice for x < 0:33 can

be described as weakly coupled [6] distorted kagome
lattices (see Fig. 1 for its structure).

Our theory is motivated by a recent neutron scattering
experiment on powder samples of Zn paratacamite for
small x [6]. These experiments find two phase transitions
at finite temperature for small x. In the low temperature
phase, the neutron scattering data is consistent with col-
linear (or Néel) magnetic ordering while no magnetic
ordering is observed in the intermediate phase. Fur-
thermore, in both phases a heavy gapped spin-1 mode is
found as well as evidence for dimerization. Finally, a weak
distortion in the kagome planes is observed at this x which
vanishes sharply for x > 0:33. Based on these results, the
authors of Ref. [6] propose that at small x the intermediate
phase is a VBS phase which then coexists with magnetic
ordering in the low temperature phase. It should be noted
that identification of the intermediate phase as VBS or-
dered is not consistent with the interpretation of previous

FIG. 1 (color online). Black (blue or gray) represent the dis-
torted kagome (dual dice) lattice. The numbers, in multiples of
1=8, are the fractional offsets in the height model on the dual
dice lattice which characterize the Berry’s phase effects.
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�SR data [7,14] that suggest this phase is magnetically
ordered. As such, further experiments, preferably on single
crystals, providing more direct measurements of VBS
order in the intermediate phase are necessary to reconcile
these experiments. It is our aim to provide useful predic-
tions for such studies.

In the present work, we study the antiferromagnetic
Heisenberg model on the distorted kagome lattice
shown in Fig. 1. We consider two inequivalent exchange
interactions, J > J0, consistent with the distortion seen in
the experiment, where J corresponds to the shorter
bond length (see Fig. 1). We are mostly interested in the
zero temperature ground states of this model and their
connection to Zn paratacamite at x � 0 and possibly for
small x. Using the Cu-O-Cu angles identified in the ex-
periment, one can utilize the Goodenough-Kanamori rule
to get J0=J � 0:3 [15]. In the classical Heisenberg model,
we find that energetics chooses the collinear magnetically
ordered state shown in Fig. 2 for J0=J < 0:5 and there exist
highly degenerate classical ground states for J0=J > 0:5.
The collinear state for J0=J < 0:5 has precisely the same
magnetic order identified in the low temperature phase in
Zn paratacamite for small x [6].

We then investigate the effect of quantum fluctuations
and possible quantum paramagnetic phases. We use the
well-documented method of the Sp(N)-generalized
Heisenberg model where one can change the magnitude
of ‘‘spin’’ to control the degree of quantum fluctuations
[13,16]. The large-N mean field phase diagram of this
model is presented in Fig. 2. Note that one gets the same

collinear magnetically ordered state for large spin for
J0=J < 0:5–0:8. Understanding of the nature of the quan-
tum paramagnetic phase for small spin, however, requires
careful analysis of the spin Berry’s phase and quantum
fluctuation effects about the saddle point solution [16,17].
We show that the resulting quantum paramagnetic state is a
VBS phase depicted in Fig. 3(a). We call this the ‘‘pin-
wheel’’ VBS state. It is to be distinguished from the
‘‘columnar’’ VBS state [shown in Fig. 3(b)] which was
suggested as a candidate valence-bond order in Ref. [6]. It
can be shown [16] that the ‘‘pinwheel’’ state can lower the
energy by the resonating moves of dimers around the
‘‘pinwheel’’ structures.

To provide definite predictions for the valence-bond
solid phase, we compute the triplon dispersions [shown
in Figs. 3(c) and 3(d)] for both of the VBS phases and
suggest that inelastic neutron scattering will be able to
distinguish these phases via their quite different triplon
dispersions when a single crystal sample becomes avail-
able. We also suggest that an x-ray scattering experiment
may clearly distinguish the two VBS ordering patterns via
their different further lattice distortions induced by the
ordering. The expected x-ray structure factors for both
phases are shown in Fig. 4.

Classical Heisenberg model.—Possible magnetic order-
ing patterns in the classical Heisenberg model can be
investigated by studying the O�N� model in the large-N
limit [18] where the 3 component spin unit vector is
replaced by an N-component real-valued vector ~�, with
~� � ~� � N. The collinear magnetic order shown in Fig. 2,

the same magnetic order observed in the experiment, is
chosen for J0=J < 0:5 by this method. When J0=J > 0:5, a
highly degenerate set of wave vectors have the same lowest
eigenvalue and energetics alone does not determine any
particular magnetic order. Thus, if magnetic ordering oc-
curs for J0=J > 0:5 at finite temperatures, it should arise
via a thermal order by disorder phenomenon.

Quantum Sp(N) model and mean field theory.—To in-
vestigate possible magnetically ordered and quantum para-
magnetic states in the quantum antiferromagnetic
Heisenberg model, it is useful to generalize the usual
spin-SU(2) Heisenberg model to an Sp(N) model [16].

Let us start with the Schwinger boson representation of
the spin operator ~Sr �

1
2b
y
r� ~��;�br�, where �, � �" , # , ~�

FIG. 2 (color online). The large-N Sp�N� mean field phase
diagram. In the small (large) J0=J regime, the Néel (incommen-
surate) long-range, LRO (short-range, SRO) ordered phases
arise. The inset represents the Néel ordering pattern.

(a) Pin-wheel state (b) Columnar State (c) Pin-wheel triplons (d) Columnar triplons
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FIG. 3 (color online). Pinwheel and columnar VBS states and their corresponding lowest energy triplon excitation spectra.
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are Pauli matrices, br� are canonical boson operators, and a
sum over repeated � indices is assumed. Note that we need
to impose the constraint nb � byr�br� � 2S to satisfy the
spin commutation relations, where S is the spin quantum
number. A generalized model is then obtained by consid-
ering 2N bosonic fields, br� with � � 1; 2; . . . ; 2N and the
constraint nb � byr�br� � 2SN. The simplest such model
with Sp(N) symmetry is

 H �
1

2

X
rr0
Jrr0 �J ��b

y
r�b

y
r0���J ��br�br0��; (1)

where J �� is a 2N 	 2N totally antisymmetric matrix
which generalizes the Pauli matrix i�2 from N � 1.
When � � nb=N � 2S is fixed while taking the large-N
limit, the saddle point solution can be classified using both
the valence-bond order parameter Qrr0 � hJ ��b

y
r�b

y
r0�i

and the magnetization induced by a finite condensate
xr� � hbr�i. The advantage of the large-N mean field
theory is that we can investigate both the large-� semiclas-
sical limit and the small-� extreme quantum limit on an
equal footing [16].

In the distorted kagome lattice, we need two inequiva-
lent valence-bond order parameters, Q1

rr0 and Q2
rr0 , as de-

picted in Fig. 1. We also need two Lagrange multipliers for
two inequivalent sites to impose the constraint byr�br� �
�N. These parameters need to be determined self-
consistently in the large-N mean field theory. The
large-N Sp(N) mean field phase diagram for the distorted
kagome lattice is shown in Fig. 2. For � > �c � 0:26, the
collinear magnetically ordered state (Fig. 2) appears in the
J0=J < 0:5–0:8 regime; this is the same magnetic order as
discovered in the experiment and in the classical model.
For J0=J > 0:5–0:8 and at large �, the ground state ac-
quires an incommensurate coplanar order and becomes the���

3
p
	

���
3
p

state at J0 � J [1]. The nature of the paramag-
netic state for small � < �c, however, cannot fully be
determined within the mean field theory.

Quantum fluctuations and valence-bond solid in the
paramagnetic phase.—Understanding of the paramagnetic
phases requires careful analysis of spin Berry’s phase and
quantum fluctuation effects about the mean field solution
[16,17]. It is important to note that Q2

rr0 � 0 in the para-

magnetic phase for small J0=J < 0:5–0:8. Thus this phase
is adiabatically connected to the J0 � 0 limit, correspond-
ing to the bipartite lattice depicted by the thick lines in
Fig. 1. Using Q1

rr0 � Q1eiArr0 , one can clearly see that the
action in this Q2

rr0 � 0 paramagnetic phase is invariant
under the U(1) gauge transformation: br� ! ei	rbr�
(br� ! e�i	rbr�) for r on the A sublattice (B sublattice)
and Arr0 ! Arr0 � 	r � 	r0 . The effective field theory of
such a paramagnetic phase is given by the gapped bosonic
spinons carrying 
1 gauge charges (depending on the
sublattices) coupled to a U(1) gauge field Arr0 . Since the
spinons are gapped in the paramagnetic phase, integrating
them out in general produces a 2� 1 dimensional compact
U(1) lattice gauge theory captured by the simple partition
function [1]

 Z �
Z Y
hiji

dAij
2


exp
�X
p

V�curlpA� � i
X
hiji

�ijAij

�
; (2)

where hiji represent the nearest-neighbor sites of the
space-time lattice (here we have discretized time) and
V��� � V���� � V��� 2
� is an arbitrary periodic po-
tential. Here p labels the plaquette of the space-time lattice
and curlpA �

P
hiji2psgnp�ij�Aij, where sgnp�ij� �

�sgnp�ji� � 1 if j comes right after i when one goes
around a given plaquette p and sgnp�ij� � 0 otherwise.
Here �ij is an external current determined by spin Berry’s
phase and it is given by �ij � ��rt�;�r0t0� � 
�rr0�t�1;t0 (for
spin-1=2) depending on whether r belongs to the A or
B sublattice. Thus the problem reduces to the compact
U(1) gauge theory with background charges of 
1 at the
A and B sublattice [1]. As is well known, this compact U(1)
gauge theory is confining and the resulting ground state
would most likely be a VBS.

To find the nature of the VBS state, it is useful to
construct the so-called height model on the dual lattice
[1], which is equivalent to the compact U(1) gauge theory
on the direct lattice. The height model can be derived using
the well-documented duality transformation and written in
terms of the integer-valued height fields h�{ defined on the
sites �{ of the dual space-time lattice [1]. In our case the
dual lattice (in a given time slice) is a distorted dice lattice
f�rg as shown in Fig. 1 (blue or gray lattice). Note that the
thick blue lines correspond to the dual lattice of the J0 � 0
limit of the original distorted kagome lattice. The height
model is found to have action (see the online EPAPS
supplementary material [19])

 Sh �
X
h{|i

g
2
�h�{ � h�| � ��{ � ��|�

2; (3)

where h{|i are the thick bonds of the distorted dual space-
time lattice and g a nonuniversal coupling constant. Here
the constraint h�{ � h�| must be imposed if {| is a thin bond
and the offset variables ��{ are determined by the spin
Berry’s phase and their time independent site-dependent
values �18 ;

6
8 ;

3
8 ; 0;

5
8 ;

2
8 ;

7
8 ;

4
8� on the dice lattice are shown in

FIG. 4 (color online). X-ray structure factor: circles represent
Bragg peaks of the ideal kagome lattice; triangles arise from the
structural distortion shown in Fig. 1. These are the only Bragg
peaks in the columnar state. In the pinwheel state, additional
Bragg peaks (hexagons) appear due to further lattice distortion.
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Fig. 1. After solving the simple constraint, this height
model can be understood using standard methods [16]
and the average height fields can be determined up to an
overall constant [1].

The nature of the VBS ground state can be studied by
using the relation between the height fields and the VBS
order parameter. It can be shown that the ‘‘electric field’’
[in the compact U(1) gauge theory] defined on the spatial
dual-lattice links is related to the height fields via e�r�r0 �
hh�ri � hh �r0 i [1]. The VBS order parameter defined on the
direct-lattice link that intersects the spatial dual-lattice link
h �r�r0i is given by the strength of e�r�r0 [1]. The result is a
‘‘pinwheel’’ pattern shown in Fig. 3(a).

Neutron scattering: triplon dispersion.—In Ref. [6], a
different VBS phase [see Fig. 3(b)]—the columnar
phase—was suggested. Here we show that different triplon
dispersions in the pinwheel and columnar VBS phases can
be used to distinguish them if inelastic neutron scattering
experiments are done on single crystals.

To compute the triplon dispersion, consider letting J be
the exchange interaction between two spins within the
same valence bond and J between two spins on different
nearby valence bonds. In the decoupled  � 0 limit, the
triplon dispersion would be completely flat with energy J.
When  is finite, the triplon band disperses. Here we
compute this dispersion to first order in . For this purpose,
we apply the bond-operator formalism [20] to the valence
bonds in the VBS phases where the Hilbert space can be
represented via singlet and triplet states on the bonds of
Fig. 3. At first order in , only the processes that preserve
triplon number contribute, and to this order they become
dispersing particles. These dispersions for the lowest band
in both the pinwheel and columnar states are shown in
Figs. 3(c) and 3(d). The minima in the two cases are clearly
located at different positions, a feature that can be distin-
guished experimentally.

X-ray scattering.—Assuming a lattice contraction where
valence bonds exist, the pinwheel state should break the
lattice translational symmetry of the distorted kagome
lattice in one of two directions, doubling the unit cell.
This would lead to new peaks in the x-ray structure factor.
However, the lattice translational symmetry would be in-
tact in the columnar state, leading to no new Bragg peaks in
the x-ray structure factor in addition to those associated
with the distorted kagome lattice. The x-ray structure
factors for the two VBS phases are shown in Fig. 4. Note
that the hexagon symbols represent the new Bragg peaks in
the pinwheel state. All other peaks also exist in the colum-
nar state.

Summary and conclusion.—We have provided a theory
of the zero temperature phases of an antiferromagnetic
Heisenberg model on a distorted kagome lattice. The re-
sulting VBS and Néel ordered phases are strikingly similar
to those identified in the recent neutron scattering experi-
ment on Zn paratacamite at small doping x [6]. In particu-
lar, our theory predicts that ‘‘pinwheel’’ VBS ordering [see
Fig. 3(a)] can occur as a result of quantum disordering of

the Néel order. We have suggested future neutron and x-ray
scattering experiments that can test our predictions for this
‘‘pinwheel’’ VBS ordering. Our predictions may also be
used for future resolution of the disagreement between the
interpretations of the neutron scattering and �SR data in
the intermediate temperature phase. Furthermore, here we
focused on zero temperature ground states of a Heisenberg
model so that an explanation of the coexistence of Néel and
VBS ordering at finite temperature is beyond the scope of
this work. However, we note that a phase transition be-
tween the two phases is likely to be first order, leaving the
possibility of a coexist region in the phase diagram. The
possible relation between the quantum phases on the dis-
torted kagome lattice described here and the yet-to-be-
determined quantum ground state [1,11–13,21,22] on the
ideal kagome lattice is an important subject of future
research.
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