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We compute the phase diagram of a biased graphene bilayer. The existence of a ferromagnetic phase is
discussed with respect to both carrier density and temperature. We find that the ferromagnetic transition is
first-order, lowering the value of U relatively to the usual Stoner criterion. We show that in the
ferromagnetic phase the two planes have unequal magnetization and that the electronic density is holelike
in one plane and electronlike in the other.
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Introduction.—Graphene, a two-dimensional hexagonal
lattice of carbon atoms, has attracted considerable attention
due to its unusual electronic properties, characterized by
massless Dirac fermions [1,2]. It was first produced by
micromechanical cleavage of graphite and its hallmark is
the half-integer quantum Hall effect [3].

In addition to graphene, few-layer graphene can also be
produced. Of particular interest to us is bilayer graphene
(BLG), where two carbon planes lie on top of each other
according to AB-Bernal stacking. In BLG it is possible to
have the two planes at different electrostatic potentials. As
a consequence, a gap opens at the Dirac point and the low
energy band acquires a Mexican hat dispersion [4]. This
system is called a biased BLG, and provides the first
semiconductor with a gap that can be tuned externally
[5–7]. Due to the Mexican hat dispersion the density of
states (DOS) close to the gap diverges as the square root of
the energy. The possibility of having an arbitrary large
DOS at the Fermi energy poses the question of whether
this system can be unstable toward a ferromagnetic ground
state—a question we want to address in this Letter. From
the point of view of the exchange instability, BLG was
found to be always unstable toward a ferromagnetic ground
state for low enough densities [8,9].

The question of magnetism in carbon based systems has
a long history. Even before the discovery of graphene,
graphite attracted broad interest due to the observation of
anomalous properties, such as magnetism and insulating
behavior in the direction perpendicular to the planes [10–
14]. The research of s-p based magnetism [15–17] was
especially motivated by the technological use of nanosized
particles of graphite, which show interesting features de-
pending on their shape, edges, and applied field of pressure
[18]. Microscopic theoretical models of bulk carbon mag-
netism include nitrogen-carbon compositions where ferro-
magnetic ordering of spins could exist in � delocalized
systems due to a lone electron pair on a trivalent element
[19] or intermediate graphite-diamond structures where the
alternating sp2 and sp3 carbon atoms play the role of
different valence elements [20]. More general models fo-

cus on the interplay between disorder and interaction
[21,22]. Further, midgap states due to zigzag edges play
a predominant role in the formation of magnetic moments
[23,24] which support flatband ferromagnetism [25–27].
Magnetism is also found in fullerene based metal-free
systems [28]. For a recent overview on metal-free carbon
based magnetism, see Ref. [29].

Model and mean field treatment.—Because of the elec-
trostatically invoked band gap, there is a large DOS for low
carrier density and thus effective screening of the Coulomb
interaction. Coulomb interaction shall thus be treated using
a Hubbard on-site interaction.

The Hamiltonian of a biased BLG Hubbard model is the
sum of two piecesH � HTB �HU, whereHTB is the tight-
binding part and HU is the Coulomb on-site interaction
part. The termHTB is a sum of four terms: the tight-binding
Hamiltonian of each plane, the hopping term between
planes, and the applied electrostatic bias. We therefore
have HTB �

P2
��1 HTB;� �H? �HV , with HTB;� �

�t
P
r;�a

y
���r��b���r�� b���r�a1�� b���r�a2���H:c:,

H? � �t?
P
r;��a

y
1��r�b2��r� � H:c:�, and HV �

V
2

P
r;x;��nx1��r� � nx2��r��. The term HU is given by

HU � U
P
r;x�nx1"�r�nx1#�r� � nx2"�r�nx2#�r��. We used

nx���r� � xy���r�x���r�, x � a�b�, as the number operator
at position r and sublattice A� (B�) of layer � � 1; 2 for
spin � �"; # ; a1 � a�1; 0� and a2 � a�1;�

���
3
p
�=2 are the

basis vectors and a � 2:46 �A the lattice constant. Unless
stated otherwise, we use t � 2:7 eV, t? � 0:2t, and V �
0:05 eV [30].

The problem defined by HTB �HU cannot be solved
exactly. We adopt a mean field approach, recently applied
to describe magnetic properties of graphene nanoislands
[31]. Since the two planes of the BLG are at different
electrostatic potentials, we expect an asymmetry between
layers for the charge density n and the magnetization m �
n" � n# (per unit cell). Accordingly, we propose the fol-
lowing broken symmetry ground state, which also defines
the mean field parameters: hnx1��r�i �

n��n
8 � �m��m

8

and hnx2��r�i �
n��n

8 � �m��m
8 , where �n and �m rep-
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resent the charge density and the spin polarization differ-
ence between the two layers, respectively [32]. This leads
to an effective bias V� � V �U�n=4� �U�m=4.

If one assumes the ferromagnetic transition to be
second-order, with m � 0 and �m � 0 at the transition,
we are led to a U-critical Uc given by

 Uc � 1=�b� ~�;Uc�; (1)

where �b� ~�;Uc� is the DOS per spin per lattice point and
~� � �� nUc=8, with chemical potential �. Although
Eq. (1) looks like the usual Stoner criterion, the effective
bias V� depends on U due to �n. This makes Eq. (1)
nonlinear, and Uc has to be found numerically in a self-
consistent way.

Simple results.—We start with the zero temperature
(T � 0) phase diagram in the plane U vs �n, where �n
is the doping relative to the half filled case. An approxi-
mate analytic treatment is possible in this limit, which is
used to check our numerical results.

In Fig. 1(a) we represent the DOS of a biased BLG with
U � 0. As seen in the inset, the DOS diverges at the edges
of the gap. As a consequence, the closer the chemical
potential to the gap edges, the lower the critical Uc value.
The low doping Uc value—given by Eq. (1) in the limit
U�n	 V—is shown in Fig. 1(b), both as a function of �n
and ~� (inset). The lowest represented value of Uc is about
Uc ’ 2:7 eV to which corresponds �n ’ 2:5
 10�5 elec-
trons per unit cell. The steplike discontinuity shown in 1(b)
forUc occurs when the Fermi energy equals V=2, signaling
the top of the Mexican hat dispersion relation.

It is clear from Fig. 1(b) that in the low doping limit Uc
is a linear function of �n. To understand this behavior, first
we note that for very low doping the DOS close to the gap
edges behaves as �b� ~�� / �j ~�j ��g=2��1=2, where �g is
the size of the gap. Using this approximate expression to
compute the doping, �n / sgn� ~��

Rj ~�j
�g=2 dx�b�x�, we im-

mediately get �n / sgn� ~��=�b� ~�� and thus Uc / j�nj. In
Fig. 1(b) both the numerical result of Eq. (1) and the
approximated analytical result just derived are shown.
The agreement is excellent.

Self-consistent solution.—In order to obtain the T � 0
phase diagram of the biased BLG, we study how m, �m,

and �n depend on the interaction U, for given values of the
electronic doping �n.

In Fig. 2(a) it is shown howm depends onU for different
values of �n. The chosen values of �n correspond to the
chemical potential being located at the divergence of the
low energy DOS, which explains the smaller critical Uc
value for smaller �n. It is interesting to note that the
saturation values of the magnetization correspond to full
polarization of the doping charge density with m � �n,
also found within a one-band model [9]. In Fig. 2(b) we
plot the �m vs U. Interestingly, the value of �m vanishes
at the same Uc as m. For finite values of m we have �m>
m, which means that the magnetization of the two layers is
opposite and unequal. In Fig. 2(c) we show �n vs U. It is
clear that j�nj< j�nj, which implies that the density of
charge carriers is above the Dirac point in one plane and
below it in the other plane. This means that the charge
carriers are electronlike in one plane and holelike in the
other. AsU is increased �n is suppressed in order to reduce
the system Coulomb energy.

In Fig. 2(d) we show the T � 0 phase diagram in the U
vs �n plane. Here we concentrate on the V � 0:05 eV
case. Symbols are inferred from the magnetization in
2(a). They signal a first-order transition when m increases
from zero to a finite value [see 2(a)]. The solid (red) line is
the numerical self-consistent result of Eq. (1), and the
dashed (blue) line is the approximate analytic result de-
scribed above. The discrepancy between lines and symbols
has a clear meaning. In order to obtain Eq. (1) we assumed
that a second-order transition would take place. This is not
the case, and the system undergoes a first-order transition
for smaller U values. There are clearly two different re-
gimes: one for �n & 10�4, where the dependence of �n on
Uc is linear, and another for �n > 10�4, where a plateau-
like behavior develops. This plateau has the same physical
origin as the steplike discontinuity we have seen in
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FIG. 1 (color online). (a) Bilayer graphene DOS for U � 0.
Inset: Zoom near the gap region. (b) Uc vs �n in the low doping
regime. Inset: The same as a function of ~�.
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FIG. 2 (color online). (a)–(c) show the T � 0 solution for m,
�m, and �n, respectively. (d) shows the U vs �n phase diagram
at T � 0: symbols are inferred from (a) and signal a first-order
transition; lines stand for the second-order one given by Eq. (1).
Labels: P, paramagnetic; F, ferromagnetic.
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Fig. 1(b). In the limit �n! 0 we have not only Uc ! 0,
but also m! 0 and �m! 0 [see 2(a) and 2(b)], implying
a paramagnetic ground state for the undoped biased BLG.

Figure 2(d) shows also the effect of V on the T � 0
phase diagram (the effect of t? being similar). Raising
either V or t? leads to a decrease of the critical U needed
to establish the ferromagnetic phase for a given �n. The
order of the transition, however, remains first-order. We
have observed that decreasing t? leads to a decrease in
�m, and below some t? we can have �m<m. A similar
effect has been seen when V is increased. It should be
noted, however, that m and �m are U-dependent, meaning
that, depending on V and t?, we can go from �m<m to
�m>m just by increasing U. Irrespective of V and t? we
have always observed j�nj< j�nj: electronlike carriers in
one plane and holelike in the other.

Understanding the asymmetry between planes.—The
asymmetry between planes regarding both charge and
spin polarization densities can be understood based on
the Hartree-Fock bands shown in Fig. 3. Additionally, we
note that in the biased BLG the weight of the wave func-
tions in each layer for near-gap states is strongly dependent
on their valence band or conduction band character
[6,33,34]. Valence band states near the gap are mostly
localized on layer 2, due to the lower electrostatic potential
�V=2. On the other hand, near-gap conduction band states
have their highest amplitude on layer 1, due to the higher
electrostatic potential �V=2.

The case U <Uc shown in Fig. 3 (left) stands for the
paramagnetic phase. The valuesm � 0 and �m � 0 are an
immediate consequence of the degeneracy of " and # spin
polarized bands. The presence of a finite gap, however,
leads to the abovementioned asymmetry between near-
gap valence and conduction states. As a consequence, a
half filled BLG would have n2 � �4� �n�=2 electrons per
unit cell on layer 2 (electronlike carriers) and n1 � �4�
�n�=2 electrons per unit cell on layer 1 (holelike carriers),
with �n � 0. Even though the system is not at half filling,

as long as j�nj< j�nj the carriers on layers 1 and 2 will
still be holelike and electronlike, respectively.

Let us now consider the case U * Uc shown in Fig. 3
(center). The degeneracy lifting of spin polarized bands
gives rise to a finite magnetization, m � 0. Interestingly
enough, the degeneracy lifting is only appreciable for
conduction bands, as long as U is not much higher than
Uc. This explains why we have m � �m, as shown in 2(a)
and 2(b)—as only conduction bands are contributing to
�m, the spin polarization density is almost completely
localized in layer 1, where m1 � �m��m�=2 � m, while
the spin polarization in layer 2 is negligible, m2 � �m�
�m�=2 � 0.

It is only when U� Uc that valence bands become
nondegenerate, as seen in Fig. 3 (right). This implies that
near-gap valence states with " and # spin polarization have
different amplitudes in layer 2. As the valence band for #
spin polarization has a lower energy the near-gap valence
states with spin # have higher amplitude in layer 2 than
their spin " counterparts. Consequently, the magnetization
in layer 2 is effectively opposite to that in layer 1, i.e.,
�m>m, as can be observed in 2(a) and 2(b).

We note that the cases U * Uc and U� Uc are pa-
rameter dependent. The valence bands can show an appre-
ciable degeneracy lifting already for U * Uc, especially
for small values of the t? parameter. In this case the
magnetization of the two layers is no longer opposite,
with �m<m. This can be understood as due to the fact
that as t? is decreased the weight of near-gap wave func-
tions becomes more evenly distributed between layers,
leading not only to a decrease in �n but also in �m.

Finite temperature.—Now we describe the phase dia-
gram of the biased BLG in the T vsU plane. This is done in
Fig. 4 for �n � 5
 10�5e�=unit cell. For T � 0–1:1 K
we studied the dependence of m, �m, and �n on the
interaction U. First we note that the minimum critical U
is not realized at T � 0. There is a reentrant behavior

~

K MΓ K MΓ K MΓ

µ

µ

µ

U > UcU < Uc U >> UcE

FIG. 3 (color online). Hartree-Fock bands for " (solid lines)
and # (dashed lines) spin polarizations.
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FIG. 4 (color online). (a)–(c) show the finite T solution for m,
�m, and �n, respectively, with T measured in K. (d) shows the
U vs T phase diagram.
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which is signaled by the smallest Uc for T � 0:06�
0:02 K. For temperatures above T � 0:1 K we have larger
Uc values for the larger temperatures, as can be seen in
4(a). The same is true for �m in 4(b). As in the case of
Fig. 2, the value of �m, at a given T andU, is larger thanm.
Also the value of �n, shown in 4(c), is larger than �n.
Therefore we have the two planes presenting opposite
magnetization and the charge carriers being holelike in
one graphene plane and electronlike in the other. In
Fig. 4(d) we present the phase diagram in the U vs T.
Except at very low temperatures, there is a linear depen-
dence of Uc on T. It is clear that at low temperatures, T ’
0:2 K, the value of Uc is smaller than the estimated values
of U for carbon compounds [35,36].

Disorder.—A crucial prerequisite in order to find ferro-
magnetism is a high DOS at the Fermi energy. The pres-
ence of disorder will certainly cause a smoothing of the
singularity in the DOS and the band gap renormalization,
and can even lead to the closing of the gap. We note,
however, that for small values of the disorder strength the
DOS still shows an enhanced behavior at the band gap
edges [37]. The strong suppression of electrical noise in
BLG [38] further suggests that in addition to a high crystal
quality—leading to remarkably high mobilities [39]—an
effective screening of random potentials is at work.
Disorder should thus not be a limiting factor in the pre-
dicted low-density ferromagnetic state, as long as standard
high quality BLG samples are concerned.

Let us also comment on the next-nearest interlayer
coupling �3, which in the unbiased case breaks the spec-
trum into four pockets for low densities [40]. In the biased
case, �3 still breaks the cylindrical symmetry, leading to
the trigonal distortion of the bands, but the divergence in
the density of states at the edges of the band gap is
preserved [37]. Therefore, the addition of �3 to the model
does not qualitatively change our result.

Conclusion.—We have found that in the ferromagnetic
phase the two layers in general have opposite magnetiza-
tion and that the electronic density is holelike in one plane
and electronlike in the other. We have also found that at
zero temperature, where the transition can be driven by
doping, the phase transition between paramagnetic and
ferromagnetic phases is first-order.
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