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We present in this Letter a free-energy approach to the dynamics of a fluid near a nanostructured
surface. The model accounts both for the static phase equilibrium in the vicinity of the surface (wetting
angles, Cassie-Wenzel transition) and the dynamical properties like liquid slippage at the boundary. This
method bridges the gap between phenomenological phase-field approaches and more macroscopic lattice-

Boltzmann models.
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Viscous dissipation is a major problem in micro or even
nanofluidic systems [1]. Large pressure gradients are in-
deed necessary to produce a significant flow at small scale.
This effect is well illustrated by the Poiseuille law relating
the flux to the size of the duct: for a cylindrical duct of
radius R, one can check that the flux decreases like R*
when a given pressure gradient is applied. The Poiseuille
law is however obtained by assuming no-slip boundary
conditions (BC) for the liquid at the walls, and recent
experiments have shown that this might not always be
the case [2]. In the presence of partial slip BC, one can
expect the situation to be less penalizing, specially if the
slip length associated to the boundary is of the order of the
duct radius or even larger [3]. Superhydrophobic surfaces
have thus attracted a considerable interest recently as
potential candidates for highly slipping surfaces: if the
liquid is repelled by the surface, one can imagine that a
thin layer of gas (air or vapor) at the surface could produce
a lubricating effect. The situation is however more com-
plex since natural or artificial superhydrophobic surfaces
are extremely rough: roughness is indeed a key ingredient
in superhydrophobicity, since it favors the trapping of air or
vapor bubbles at the boundaries [4]. This effect is due to
capillarity, and the question to understand the coupling
between the three ingredients, hydrodynamics, capillarity
and surface roughness is a true challenge. From the experi-
mental point of view, the situation is still very controver-
sial, with measured slip lengths varying on several orders
of magnitude [3]. It is thus crucial to have numerical
models able to investigate the static and the dynamic
properties of a fluid at a structured boundary.

Several approaches have been considered (see [3] for a
recent review), ranging from molecular dynamics at the
nanometric scales [5] to hydrodynamic models (including
the lattice-Boltzmann approach [6]) at micronic scales [7—
12], and a very recent phase-field model at intermediate
scales [13]. The method we shall consider in this Letter is
intermediate between phase-field phenomenological ap-
proaches, not accounting for the specificities of the gas
phase (low viscosity and high compressibility) and the
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more macroscopic lattice-Boltzmann approaches. It ac-
counts explicitly for a possible liquid-vapor coexistence
in the vicinity of a structured surface, and also accounts for
an hydrodynamic flow with liquid slippage at the surface.
This model is able to reproduce both static properties such
as wetting angles or Cassie-Wenzel states, but also to
predict the effective slip lengths of structured interfaces
by accounting explicitly for the low viscosity gas layer that
forms at the boundary. Moreover, this approach gives
access to the intrusion dynamics of the fluid inside the
pores of the structured surface, which is an important
phenomenon when the liquid is submitted to large
pressures.
The model is constructed as follows:

P v (o) = —2 N
E—i-V (pv) C(Sp) or CA<5P> (1)

is the transport equation for the local density field p(r, 1),
where ¢ is time and r denotes the position; v(r, ) is the
local velocity field and Q[p] = F[p] — w [ p(r)dr is the
grand-potential functional associated to the thermody-
namic equilibrium between the liquid and the vapor phase
(F[p] is the free-energy). p is thus a physical order pa-
rameter here, and not simply a mathematical object to
identify the phases as in usual phase-field approaches
[13]. The convective transport of the density field is in-
cluded in the left term, while the local thermodynamic
equilibrium is contained in the right terms: the first writing
corresponds to the Allen-Cahn model [14], interesting for
the study of the phase diagram (nonconserved dynamics,
fixed chemical potential ), and the second writing is the
Cahn-Hilliard model [15], corresponding to a more realis-
tic conserved dynamics, that we shall use to investigate the
nonequilibrium properties. C’ is related to the molecular
diffusion constant D in a bulk phase by the relation: D =
C'f" (p) where f" denotes the second derivative of the
bulk free-energy f(p) at the bulk density p. In this work we
used D = 2300 wm?/s in the liquid phase, to match the
autodiffusion constant in pure water (D = 2270 um?/s).
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The free-energy functional is F[p]= [dr{f(p) +
VP + pViyar(r)} with £(p) = ksTpllog(22) — 1} —
ap? the free-energy density of the bulk van der Waals
theory (a is the mean field attractive energy between two
atoms, and b is the close packing inverse density). The
square gradient term accounts for the natural thickness of
the liquid-vapor interface and gives rise to the surface

tension ypy = w [2t\/2[f(p) — wp + Pldp [16], where
P is the bulk pressure, p; and py are the coexisting liquid
and vapor densities, respectively. w is related to the inter-
facial thickness. V,,,;(r) is the interaction potential applied
by the wall. Equation (1) has to be solved with the corre-
sponding equation for the velocity field:

SF(p]
op

a'Z—”t’v—l—V~(pmvv)=V~0'—pV<

> + fwall’
(2

where p,,(r,t) is the local mass density (p,,(r,t) =
Mp(r, t), with M the molecular mass), o = 1n(p)(Vv +
V') is the local viscous stress tensor (with n(p) the shear
viscosity). Although more accurate prescriptions can be
considered, we use in this work the simple ansatz 5(p) =
PV, where the kinematic viscosity v is assumed to be the
same in the liquid and the vapor phase. The second term

- pV(‘Sg—E)p]) is the thermodynamic force field applied by the

density field p(r) to the flow. This term contains both the
compressibility of the fluid, fixed by the van der Waals
theory, and the capillary force when interfaces are present.
The last term of Eq. (2) accounts for the interaction with
the wall.

We shall now discuss the interactions between the fluid
and the wall. The two fields p(r, t) and v(r, t) are defined in
the whole parallelepipedic resolution box, and are thus
defined and solved inside the walls. While the static prop-
erties of the wall are controlled by V,,;(r) (expulsion of
the fluid from the wall and wetting properties), the bound-
ary conditions for the velocity field are controlled by f.p-
A prerequisite for a correct description of the dynamical
behavior of the liquid at superhydrophobic surfaces is to
model properly the intrinsic slip properties of the liquid on
a flat solid surface. Our prescription for f,,; ensures
partial slip BC in this case. These boundary conditions
correspond to the continuity of the tangential stress o, at
the fluid-solid interface: o, in the fluid equals —Avy(z,),
the friction stress applied by the wall, where z is the normal
direction, || the tangential direction under consideration, A
is the friction coefficient and v)(z,) the slip velocity at the
wall (z = z;). The partial slip BC thus expresses
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where b = i/ is the slip length, and n is the shear

viscosity of the fluid. If b, 5, and the slip velocity are
known, the stress at the interface is —nv)(z,)/b.

The bare interaction between an atom of the wall and an
atom of the fluid is the Lennard-Jones potential in our
model: Vi ;(r) = 4€[(o/r)'? — (o/r)®]. The global poten-
tial applied by the wall on a single atom of the fluid is
Vaai(r) = [ poar(r)V(r" — rl)dr', where pyu(r) is the
density of atoms in the wall (assumed to be a constant
inside the wall and zero elsewhere), and V(r) is the bare
interaction potential [V} ;(r)] multiplied by the pair distri-
bution function between an atom of the wall and an atom of
the fluid. The main property of this pair distribution func-
tion is to vanish when r — 0 since two atoms cannot
overlap, while V;;(r) — +c0 in this limit. The product of
these two functions thus goes to a well-defined limit in
r = 0. As a result, the potential energy inside the wall is
large, but finite. We shall denote by V., this energy and use
the simple ansatz: Vi, (r) = min(Voy, [ pyan(r)Vi(Ir' —
r|)dr’). This prescription fixes the interaction to be of the
Lennard-Jones type close to the boundary with the fluid,
and to be V, inside the wall. V_ fixes the value of the
fluid density inside the wall, chosen to be negligible as
compared to the density of the vapor phase (po® < 1073).
In this limit, the results become independent of V.

The force field f,,; exerted by the wall on the fluid is
chosen as a friction force:

fwall = _kfp(r)v(r) fdr/{pwall(r/)e7(3/2)((#7")2/0—2)}-

This force is proportional to the interaction energy e
between the solid and the fluid [3,17]. This prescription
enabled us to reproduce correctly the evolution of the BC
with the wetting properties. In particular, we obtain a
transition from a no-slip BC in a wetting situation (6 ~
0°) to a partial slip BC with » ~ 10 nm (depending on the
value of k) in a nonwetting situation (6 ~ 120°).

The two Egs. (1) and (2) can be solved numerically on a
regular lattice (cubic unit cell in 3D or square in 2D) with
periodic BC at the edges of the resolution box on the
appropriate quantities, as we shall discuss. The wall is
defined in the resolution box by the function p,;(r). We
consider a slab geometry corresponding to a fluid confined
between two walls, the bottom wall is textured with a
periodic structure (crenels in this study), while the top
wall can either be structured in static studies [Fig. 1(c)],
or planar in dynamic situations [Fig. 1(d)]. The density
p(r) is periodic in the slab (x-y) direction, but also in the z
direction since it goes to a constant value (nearly vanish-
ing) inside the walls. The velocity field is periodic in the
x-y direction, but not in the z direction where a linear shear
v,(r) is applied. In this case, the periodic BC is taken on
u(r) = v(r) — v,(r) in any directions. By using a simple
Euler scheme, Eqgs. (1) and (2) can be solved iteratively
starting from an initial configuration for p(r) and wv(r).
Taking advantage of the periodicity of p(r) and u(r), we
use an implicit method in the Fourier space to improve the

186103-2



PRL 100, 186103 (2008)

PHYSICAL REVIEW LETTERS

week ending
9 MAY 2008

a) al b)

il
L

)/

SV

d)

"I A

I JO0 ooy e

Wenzel

Cassie

FIG. 1. Schematic views of the systems under consideration.

numerical stability, but simpler schemes can be used as
well.

To illustrate the ability of the model to account for the
small scale physics of the interfaces, we consider two
situations. The first study corresponds to a static case,
where v (r) = 0. The wetting properties can be probed
either by measuring the contact angles of a drop placed
on the surface, or more simply by measuring the three
surface tensions of the liquid-solid (yg;), vapor-solid
(ysv) and liquid-vapor (y;y) interfaces. The model pre-
sented here gives a direct access to the free-energy or the
grand-potential (an advantage compared to molecular
simulations); the surface tensions can thus be measured
directly by considering a fluid confined between two struc-
tured walls as depicted in Fig. 1(c). Provided the distance
between the walls is large compared to the typical relaxa-
tion length of the density profile, the walls can be consid-
ered as independent. The relaxation length scale of the
density profile is given by the interfacial thickness w, and
we use a distance between the two walls of the order of
50w, which ensures an accurate determination of the sur-
face tensions. The liquid-solid [resp. vapor-solid] surface
tension is measured by starting the simulation with a liquid
(vapor) phase between the walls. For planar interfaces this
prescription is very efficient and the two surface tensions
can be measured in the full range of variation of the
interaction potential Vij, which is done by varying e.
From these two quantities, and the knowledge of vy,
the contact angle with the planar surface can be calculated
through the quantity I" = 75‘;:3“. I' corresponds to cosf

when [I'| = 1 and is an increasing function of € (attractions
favor wetting of the liquid phase). We shall consider I
rather than € in the discussions, since the contact angle is
the experimentally relevant quantity. When the wall is not
planar, and has a crenel shape as depicted in Fig. 1(a), the
situation is more complex since various states can be
observed. We used in this case two different types of initial
configurations: Wenzel states corresponding to a mono-
phasic system, or Cassie states corresponding to a diphasic
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FIG. 2 (color online). Wetting properties of a crenelated sur-
face (see text for details).

situation [see Fig. 1(c)]. Of course, the equilibrium result
should not depend on the initial state, this prescription
gives us however a way to probe metastability in the
system. The wetting properties of the structured wall can
be measured as well by determining the effective surface
tensions & and £, for the equilibrated configurations,
the variation of the corresponding wetting parameter ' is
plotted in Fig. 2. This figure illustrates very well the
Cassie-Wenzel transition between the imbibed and super-
hydrophobic states [4]. Moreover, several important fea-
tures can be noted from these results: first we observe a
strong metastability, with the presence of superhydropho-
bic metastable states, and next, we observe an asymmetry
in the wetting properties when we go from the nonwetting
region to the wetting one. The macroscopic model describ-
ing the transition between Cassie and Wenzel states is
compared to the numerical results in Fig. 2. This model
is quite accurate in the nonwetting region, which is not a
surprise since we have the same geometry: the interfaces
are planar at coexistence. In the wetting regime on the
contrary, we observe discrepancies with the macroscopic
theory. The difference comes from corner effects: the
interaction potential between the fluid and the wall has
particular values at the corners that generate a corner
energy. These corner effects are mainly visible when a
liquid phase fills the crenels (wetting situation), in gas
phases the low value of the density leads to negligible
contributions. If €, and €}, are the excess free-energies
in the liquid phase at the upper and the lower corners [see
in Fig. 1(c) the points U and D], the Wenzel theory can be
modified as follows:

€y T+ €p

reff =11 +2d/L) — 2
Lyry

, “)
where € and €, are measured independently. This theory
reproduces very well the effective contact angle (Fig. 2).
Please note that €; and €, are not constant, they vary
slightly with cos6, which is visible in Fig. 2.

186103-3



PRL 100, 186103 (2008)

PHYSICAL REVIEW LETTERS

week ending
9 MAY 2008

50

[ Both gra;')hs: I ' ' % T 'I ——— T — :_
[ |AAflat wall € t .
40l |©©O SH surface E - AAX@@(%AAAA”A””A”’A 14
i ok B Oy v ]
E g ]
N \ _-0 7]
B O/O\Q 1 \‘ ’/,0 B
30 \\ Nm o 1
-~ [ © Q 51 .
g ey
— Q
Q 201 6 (nm) .
@\
[ AAAADAAD AAA A A
101 Periodicity L=30nm \G\ ]
Width 1=27nm (o8
Depth d=30nm h S oo
! !

6 (nm)

FIG. 3 (color online). Evolution of the slip length b with the
recess 6 of the meniscus inside the crenel, for a flow perpen-
dicular to the crenel. Inset: Evolution of the shear plane position
Z, as a function of §. For the SH surface, z,, is defined as the top
of the crenels.

We now turn to the dynamical properties of the surfaces.
The dynamics of a fluid close to a textured wall can be
accounted for using effective partial slip BC (3), where
both the slip length » and the hydrodynamic position of the
wall z; are unknown. For a smooth surface, it has been
shown that the BC applies at about one molecular layer
inside the fluid, for both no-slip and slip cases [17].
However, for superhydrophobic surfaces, it is not clear
where the BC should apply. In this work we therefore
measured both b and z;, by probing our system using
both Couette and Poiseuille flows [17]. The geometry of
the system corresponds to Fig. 1(d), where the top wall is
planar and the bottom one is structured. This hybrid ge-
ometry allows for the determination of the effective
boundaries for both the planar and the textured interfaces
at the same time. The figure corresponds to a Couette flow,
for which the top wall moves with a velocity U perpen-
dicular to the crenels, while the bottom wall is fixed. The
Poiseuille situation corresponds to fixed walls, but a pres-
sure gradient is applied. We shall investigate the variation
of both b and z, as a function of the liquid pressure. Rather
than the pressure itself, we can equivalently fix the average
density in the slab by using a conserved dynamics, and
measure the pressure afterwards. We shall use &, the recess
length of the liquid in the crenel [taken from the top of the
crenels, as depicted in Fig. 1(d)], as the control parameter.
6 can either be negative or positive. The slip length of the
planar (bare) liquid-wall interface is taken to be around
13 nm at coexistence, and is observed to vary very weakly
with pressure (Fig. 3). On the contrary, the slip length of
the structured wall varies in larger proportions, between
35 nm for the upper limit down to O for the lower one.

Pressure has the effect to reduce slippage, and even to
cancel it. The effective slip length crosses the bare one
when 6, =~ 2 nm, and is lower above. This result is largely
independent of the crenel depth since the depth we con-
sider in the present simulation (30 nm) is large compared to
the crossover length &..

To conclude, the model presented here is very flexible
and can account for complex BC. Although we focussed on
crenelated walls, we can treat any type of geometry, 3D
shapes such as posts or random surfaces, or conic shapes to
model surfaces coated with nanotubes [18]. The dynamics
on crenelated surfaces revealed the strong sensitivity of the
effective slip length to the recess of the meniscus & inside
the crenels, cancelling slippage as soon as 6§ =~ 2 nm. This
critical value increases with the periodicity L, although it
remains a small fraction of it. However, increasing L is not
necessarily a good idea since the corresponding intrusion
pressure will decrease. Although nanostructured surfaces
have lower slip lengths than microstructured ones in gen-
eral, the slip properties resist better to pressure. There is
thus a compromise to find between slippage and pressure
resistance.
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