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We observe using low-energy electron microscopy the self-assembly of monolayer-thick stripes of Au
on W(110) near the transition temperature between stripes and the nonpatterned (homogeneous) phase.
We demonstrate that the amplitude of this Au-stripe phase decreases with increasing temperature and
vanishes at the order-disorder transition (ODT). The wavelength varies much more slowly with tempera-
ture and coverage than theories of stress-domain patterns with sharp boundaries would predict, and
maintains a finite value of about 100 nm at the ODT. We argue that such nanometer-scale stripes should
often appear near the ODT.
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The theory that ordered patterns can occur on solid
surfaces to relax stress was proposed many years ago
[1,2]. These patterns in principle offer a way of controlling
the structure and hence functionality of surfaces. ‘‘Stress-
domain’’ patterns arise from the competition between the
short-range attractive interaction between atoms, leading
to a phase-boundary energy, and a long-range repulsive
interaction between boundaries, due to the difference in
surface stress between the two phases. This repulsion is
mediated by elastic deformations of the substrate. So far,
such stress-domain patterns have been observed and quan-
tified in the low-temperature, sharp-interface regime,
where the interfaces between the two separated phases
are abrupt. (See for example [3–5].) However, as the
temperature is increased, the amplitude of the modulated
pattern should decrease. At sufficiently high temperature a
transition to a homogeneous phase occurs, which we call
the order-disorder transition (ODT). As the ODT is ap-
proached, the interface width is expected to increase, even-
tually becoming of the order of the stripe periodicity,
making the sharp-boundary theory [1,2] inappropriate.

Our present experimental study of Au on W(110) ex-
plicitly shows this breakdown near an ODT and the large
impact it has on the pattern periodicity. The Au-stripe
periodicity varies much more slowly with temperature
and coverage than sharp-boundary theories would predict,
and maintains a finite value of about 100 nm at the ODT. In
contrast, we find that the mean-field description of patterns
with diffuse interfaces well describes the measured tem-
perature dependence. Based on this agreement, we suggest
that nanometer-scale periodicities should be much more
common in pattern-forming systems at their high-
temperature limit than one would expect from the low-T,
sharp-interface theory.

Quantitative observations near the ODT are difficult
because thermal fluctuations of boundaries typically de-
stroy the pattern’s long-range order. As first observed by
Duden and Bauer [6,7], Au on W(110) self-assembles into

stripes of monolayer-thick Au islands [see Fig. 1(a)].
Because of strong surface anisotropy, the stripes form
with long-range order along a particular crystallographic
direction, �1�10�. Thus, we are able to use low-energy
electron microscopy (LEEM) to measure the pattern’s
amplitude (related to the Au density [8]) and wavelength
approaching the ODT. The amplitude decreases steadily
with increasing temperature and vanishes at the ODT. The
pattern’s wavelength also decreases with temperature but
has a finite value of 100 nm at the ODT.

Our experimental setup and sample preparation are de-
scribed in detail in Ref. [8]. Our estimated error in the
absolute temperature is 10 K with a precision of 1 K. The
total Au coverages, given as the fraction of a complete
condensed Au layer in monolayers (ML), were determined
by the elapsed deposition time from a calibrated Au flux.

We first establish the location of the pattern formation in
the Au on W(110) phase diagram. Small amounts of Au
form a two-dimensional adatom gas. At higher densities,

FIG. 1. (a) LEEM image of Au stripes, which appear dark at
10 eV electron energy, on W(110) at 619 �C. The field of view is
7 �m. (b) Measured phase diagram of Au on W(110). The solid
line is a guide to the eye to show when the Au-adatom gas and
the Au islands are in equilibrium. Closed circles are data from
reflectivity measurements [8]. Open circles are determined from
loss of contrast in LEEM images. Stripes were observed at
temperatures near but below the open circles.
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the Au adatoms condense into monolayer-thick Au islands.
Because Au and W do not alloy, the system has long been
used to evaluate phase diagrams of condensates and ad-
atom gases [10,9]. Figure 1(b) shows the phase diagram
measured using LEEM. At low temperatures, we deter-
mine the Au adatom concentration in equilibrium with
condensed Au using the linear decrease in electron reflec-
tivity with coverage [8]. As seen in Fig. 1(b) (closed
circles), the adatom density in equilibrium with condensed
Au increases with temperature. At higher temperatures and
coverages, we find that the system self-assembles into a
lamellar phase consisting of stripes of condensed Au sepa-
rated by stripes of the Au-adatom gas [Fig. 1(a)].

In the sharp-interface limit, the stripes can be considered
as being composed of two coexisting phases. In this limit,
the density of the Au-adatom gas region of the stripes as
well as the density of the condensed Au islands at any
temperature should be that given by the phase diagram
partially shown in Fig. 1(b). The relative areas of the two
phases should be determined by the lever rule [see sche-
matic of Fig. 2(a)]. In particular, at constant temperature
the densities of both phases should be independent of the
total Au coverage.

As shown in Fig. 2, our observations are inconsistent
with the sharp-interface limit. Figures 2(b)–2(e) show
images when the total Au coverage is varied from
0.2 ML to 0.5 ML. The uniform decrease in image intensity
with increasing coverage indicates [8] that the atomic
density of both the dilute and dense regions of the stripes

is changing with Au coverage. The changing density of the
stripes is shown more directly in Fig. 2(f), which gives
profiles across these images where we have converted
image intensity to Au density, following [8]. Rather than
the relative area of the two phases changing with overall
coverage, the relative area is constant and the density of
both phases changes. For example, the density of the gas-
phase Au regions changes from about 0.25 to 0.4 ML when
the total Au coverage is varied from 0.2 to 0.5 ML.

We next show that the pattern’s wavelength and ampli-
tude as temperature approaches the ODT are markedly
different from the behavior expected from the sharp-
interface limit. As seen in Fig. 3, with increasing tempera-
ture the stripe density increases and the pattern contrast
decreases. To quantify the amplitude and wavelength of the
stripe phase, we used a Fourier analysis approach [11].
Results of this procedure applied to a sequence of images
at different temperatures are shown in Fig. 4. As tempera-
ture increases, the amplitude of the pattern decreases
steadily until it vanishes at the ODT. While the periodicity
of the pattern also initially decreases with increasing tem-
perature, it does not approach zero at the ODT. Instead, the
wavelength reaches a constant value of about 100 nm.

This striking coverage and temperature dependence and
the fact that the stripes form near temperatures where the
gas phase and condensed Au become indistinguishable
suggest that a diffuse-interface limit of stress-domain pat-
terns is appropriate. We adopt a continuum diffuse-
interface model with a spatially varying order parameter
� � �2�� �0�=�0, where � is the spatially dependent Au
density and �0 is the density of the condensed Au phase at
low temperature. The free energy of the system is a sum of
short-range and long-range contributions, F � Fsr � Flr.
The short-range energy per unit stripe length is
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FIG. 2. (a) Schematic of the expected changes in the stripe
pattern with coverage in the sharp-interface limit. In contrast,
(b)–(e) show LEEM images at constant temperature (620 �C)
while continuously depositing Au on the W(110) surface. The
images are 4 �m wide. All frames use the same intensity scale.
(f) Representative intensity profiles (averaging 10 lines of pixels
for 1 s) at each coverage.

FIG. 3. (a)–(f) Sequence of LEEM images taken while chang-
ing the temperature at a constant Au coverage. The images are
4 �m wide.
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Here x is the coordinate perpendicular to the stripes, r �
r0�T

0
c � T� with T0

c the bare transition temperature (i.e.,
before renormalization by the long-range interaction), r0

and u are phenomenological parameters and c determines
the boundary energy. This form for the short-range free
energy is the standard Landau expression representing a
phase diagram with a low-temperature miscibility gap and
a critical point at T0

c .
The long-range interaction comes from the elastic fields

in the substrate due to the presence of surface atomic stress
dipoles. We assume that the local surface stress � is pro-
portional to the adatom concentration: � � ���=2, with
�� � �0�@�=@��. Then the total long-range energy per
unit stripe length is

 Flr � 2g
Z
dxdx0

��x���x0�

�x� x0�2 � a2 : (2)

Here g � ����2M=2�, where M is a combination of elas-
tic constants [12], and a is on the order of an atomic lattice
constant. Far from the ODT, � � 	1, with sharp interfa-
ces separating the stripes. In this regime, the equilibrium

wavelength � is obtained from the above free energy by
standard methods [1,2]: � � 2�ae�1���=g��, where � is the
boundary energy in the sharp-boundary limit. Near the
ODT, however, the amplitude of the modulation is small,
and a single-mode analysis is appropriate. Assuming a
profile for the order parameter ��x� � A cos�2�x=��,
and minimizing the free energy as a function of �, we
find that at the renormalized ODT temperature, Tc � T0

c �
g=�r0a� [13,14]:

 �c �
2c
g
: (3)

This wavelength does not depend on coverage, exactly as
we observe in Fig. 2 [15].

In contrast to the sharp-boundary approach, with its
exponential dependence on the ratio of boundary to elastic
energies, the wavelength at the ODT has a much milder
linear dependence. Although we have neglected fluctua-
tions in the stripes in deriving this equation, we expect the
proportionality to c=g to be independent of this assump-
tion. On dimensional grounds c=g defines a length scale
that sets a lower limit for the periodicity of stress domains
at high temperature.

To determine if Eq. (3) quantitatively explains the ob-
served �, we must estimate the parameters g and c. To
calculate g, values for the stress difference between the two
phases and the constant M are needed. Fortunately, pre-
vious work on stripe phases at solid surfaces has calculated
the value of M � 4:5
 10�12 m2=N for stripes oriented
along the �1�10� direction on the W(110) surface [12]. To
provide a value for ��, we performed density functional
theory (DFT) calculations within the local density approxi-
mation (LDA) and the generalized gradient approximation
(GGA) [16] of the excess stress of Au adatoms on W(110).
The difference between LDA and GGA values is an esti-
mate of the unknown errors introduced by the approxima-
tions to DFT. We use the VASP code [17] for our supercell
calculations [18]. As shown in Fig. 5, the calculated sur-
face stress perpendicular to the stripe direction depends
linearly on the adatom coverage, providing the value �� �
3:7 N=m. The value for g is thus 9:8
 10�12J=m.

FIG. 4. (a) Plot of the Fourier spectra, offset for clarity, along
the x direction at different temperatures. (b) Temperature de-
pendence of the stripe amplitude and periodicity. Inset: Stripe
periodicity showing the scaling as described in Eq. (4).
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FIG. 5. Excess stress of Au adatoms on W(110) obtained from
DFT calculations. (Open circles, GGA; closed circles, LDA).
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Estimating c is more difficult because it depends on the
detailed nature of the short-ranged attractions between Au
adatoms. In general one expects c to scale with Tc. For
example, in the simple nearest-neighbor Ising model on a
square lattice c � kTc=2. To make a more refined estimate
we consider the temperature dependence of � close to the
ODT. To do so, we extend the single-mode analysis to two
modes, and apply a perturbation analysis [19] to calculate
the amplitudes of the two modes at equilibrium.
Minimizing the free energy with respect to � using the
calculated amplitudes gives

 � � �c

�
1�

�4
ca

4r2
0T

2
c

384�4c2

�
1�

T
Tc

�
2
�
: (4)

A plot of �=�c � 1 versus �1� T=Tc�2 should give a
straight line. Using the measured values �c � 100 nm
and Tc � 908 K, the inset in Fig. 4 shows that our experi-
mental data follows this prediction. A numerical fit gives
the ratio a2r0Tc=c � 0:5. From the regular solution model
[20], we have a2r0 � 4kB giving c � 8kBTc. With this c
value and the g given above, the stripe periodicity at the
ODT predicted by Eq. (3) is then 20 nm. Given our
approximations, this number is in reasonable agreement
with the experimental result, �c � 100 nm.

Although accurately calculating values of c and g in any
particular system is difficult, there is nothing special about
Au=W�110�. Tc is typical for metal monolayers, as is the
calculated surface stress of the condensed overlayer. Thus
we expect that the equilibrium structure of metal mono-
layers at high temperature will often have density modu-
lations with a similar length scale. This is in striking
contrast to the sharp-interface limit of stress domains,
where the domain periodicity is extremely sensitive to
interaction strengths.

In summary, we have presented experimental evidence
that Au stripes observed on W(110) at high temperature are
in the diffuse-interface limit of surface-stress domains,
with a temperature and coverage dependence qualitatively
different from the oft-applied sharp-interface limit. By
comparing our results with theoretical calculations of the
stripe periodicity, we predict that nanometer-scale stripe
patterns should be common near two-dimensional critical
points.
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