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Hamiltonian systems with a mixed phase space typically exhibit an algebraic decay of correlations and
of Poincaré recurrences, with numerical experiments over finite times showing system-dependent power-
law exponents. We conjecture the existence of a universal asymptotic decay based on results for a Markov
tree model with random scaling factors for the transition probabilities. Numerical simulations for different
Hamiltonian systems support this conjecture and permit the determination of the universal exponent.
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The phase space of Hamiltonian systems with 2 degrees
of freedom (2D) generally shows an intricate mixture of
chaotic and regular structures. Regular regions consisting
of ‘‘islands’’ of quasiperiodic motion (KAM tori) appear
hierarchically interspersed in a chaotic sea. The character
of the motion in the irregular component is dominated by
stickiness of trajectories close to the boundary circles
separating regular from irregular regions. Stickiness cru-
cially affects statistical quantities, like correlations, the
distribution of Poincaré recurrences or anomalous diffu-
sion, which show related algebraic behaviors. Finite-time
numerical experiments revealed system-dependent values
for the power-law exponent z of the decay of the distribu-
tion of Poincaré recurrences, P�t� � t�z, that is the proba-
bility to return to a given region after a time larger than t.
Great effort was devoted over the last two decades to
understand if there is an asymptotic universal decay for
P�t� and how its temporal behavior is related to the hier-
archical phase-space structure near regular boundaries [1–
10]. In particular, renormalization techniques were used to
derive scaling relations for the self-similar structure close
to the critical circle with golden mean frequency [6,9] or
for trapping in exact self-similar island-around-island
structures [8]. More recently it was demonstrated [10]
that both scenarios are usually present in an Hamiltonian
system, thus strengthening the validity of a Markov tree
approach [7]. While the self-similar Markov tree model
succeeds to reproduce a power-law decay, it is based on the
approximation of exact self-similarity [7,11]. It remains an
open question how deviations from exact scaling affect the
algebraic decay and the issue of universality.

In this Letter we study the role of random scaling factors
in a Markov tree model. Initially, different realizations of
the randomness give rise to quite different power-law
behaviors (see Fig. 1). In contrast, we show that asymptoti-
cally the exponent of the algebraic decay is the same for all
realizations. We argue that this qualitative feature of the
model is representative for 2D Hamiltonian systems and
present strong numerical support. As a consequence the

average of P�t� over different Hamiltonian systems is a
meaningful quantity and allows for an efficient determi-
nation of the asymptotic universal decay. We numerically
extract a universal exponent z ’ 1:57 for Poincaré recur-
rences in 2D Hamiltonian systems.

We consider a Markov model on a binary tree. For an
arbitrary site s, we call Ds the site obtained by going up
one level in the tree towards the root site �s [see Fig. 1(a),
inset]. The dynamics on the tree is defined by the proba-
bilities to move in one time step to one of the neighboring
sites. As we are interested in the survival probability we put
D�s as an absorbing site and we fix a nonzero probability of
leaving the tree p�s!D�s [12]. The transition probabilities for
all sites s below �s are then chosen according to

FIG. 1 (color online). (a) Survival probability PI�t� for 100
realizations of random scaling factors (thin lines) and their
logarithmic average (thick line). Inset: binary tree with root �s
and absorbing site D�s. (b) Rescaled survival probabilities
PI�t�t

zI with zI from Eq. (9), showing the same asymptotic
power-law exponents. (c) Variance �2�t� of ln�PI�t�tzI � showing
boundedness.
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pDs!s=ps!Ds � As;

ps!Ds=pDs!DDs � Bs;
(1)

where the scaling factors As and Bs are positive random
variables with the constraints (i) hAi< 1=2 and (ii) B< 1.
The constraint (ii) ensures that the transition probabilities
decrease moving away from the root �s. The constraint
(i) allows to define an initial probability density
�s�t � 0�, with normalization

P
s�s�0� � 1, that would

be invariant for the closed system (p�s!D �s � 0) by satisfy-
ing detailed balance �s�0�ps!Ds � �Ds�0�pDs!s. Because
of the nonzero transition probability p�s!D�s of leaving the
tree towards the absorbing site D�s there is a decaying
survival probability

 PI�t� :�
X
s

�s�t�; (2)

of being still inside the tree at time t, with the subscript I
standing for the ‘‘invariant’’ initial condition.

In order to quantify the decay of the survival probability
we make use of the following observation: In the sum,
Eq. (2), the density �s�t� at a site s gives its most important
contribution while it is decaying exponentially, with a rate
that is dominated by the probability ps!Ds to escape in the
upward direction. At later times, even though its decay
becomes algebraically slow, its contribution can be ne-
glected [13]. The survival probability can thus be approxi-
mated by a sum of decaying densities [14]

 PI�t� �
X
s

�s�0�e�ps!Dst: (3)

Numerically, we find this to be a good approximation, in
the sense that the ratio with the exact decay of Eq. (2) is
found to be asymptotically constant.

Power-law asymptotics can be conveniently extracted
using singularity analysis of the Mellin transform. An
algebraic decay P�t� � t�� is transformed into a simple
pole of its Mellin transform P	�z� �

R
dt tz�1P�t� at z �

�. In particular we find using Eq. (3)

 P	I �z� � ��z�
X
s

�s�0�
pzs!Ds

� ��z�
��s�0�

pz�s!D�s

X
s

Yn�s��1

i�0

ADis

BzDis

; (4)

where ��z� is the Gamma function and where we used

 �s�0� � ��s�0�
Yn�s��1

i�0

ADis; ps!Ds � p�s!D�s

Yn�s��1

i�0

BDis:

(5)

The products run over the sites Dis encountered on the
direct path from s to the root �s and n�s� is the number of
levels ascended.

As we are interested in the asymptotic behavior of PI�t�
for t! 1, we need to find the right boundary of the strip of
convergence of Eq. (4). The Gamma function has no poles
with positive real value and thus we concentrate on the

factor containing the sum over the sites s. Fixing z real, the
infinite sum of products of random variables A

Bz diverges
with probability one [15] if ��z�> 1=2, where

 ��z� � min
0
�
1

��
A
Bz

�
�
�
: (6)

Using the constraints (i) and (ii) of our random variables A
and B, one finds that��z� is monotonically increasing from
��z � 0�< 1=2 to ��z! 1� � 1. This implies that there
is a critical zI with

 ��zI� � 1=2: (7)

Thus the survival probability asymptotically decays as

 PI�t� � C�t�t
�zI ; (8)

with C�t� growing at most logarithmically [16]. We stress
that zI depends on the probability distributions of the
scaling factors A and B only and not on the specific values
appearing in a given tree. The power-law exponent zI is
thus realization independent.

For not too wide distributions of A and B, e.g.,
h� ABzI �

2i< 2h ABzI i
2, one can show that the minimum in

Eq. (6) appears at � � 1 and Eq. (7) simplifies to

 

�
A
BzI

�
� 1=2: (9)

A numerically convenient, but otherwise arbitrary example
is shown in Fig. 1 for random variables A and B indepen-
dent and uniformly distributed on an interval in logarithmic
scale with lnA 2 ��4:21;�3:17� and lnB 2 ��2:02;
�0:98�, giving zI � 1:88. It clearly demonstrates that,
even though initially quite different power laws emerge,
asymptotically all realizations have the same power-law
exponent. In addition, one observes that the averaged curve
shows this asymptotic exponent beginning at much smaller
times.

Moreover, in this case of not too wide distributions, one
can show that fluctuations around the asymptotic algebraic
decay vanish for each realization, as observed in Fig. 1(b).
This is due to an increasing number of sites s contributing
significantly to Eq. (3) as time increases. We have numeri-
cally demonstrated this by finding that the inverse partici-
pation ratio

P
s��s�t�=P�t��

2 of the contributing densities
decreases like a power law as a function of time (not
shown). It stresses the fact that the contribution to P�t� at
large times arises from an increasing number of paths [10].

In Fig. 2 we show numerical examples, that check quite
different distributions for A and B compared to Fig. 1. The
power-law exponents are fitted from the exact evolution
Eq. (2) for a single realization of scaling factors, showing
good agreement with the analytical prediction, Eq. (9).
This agreement gives also an indirect confirmation of the
validity of the approximation used in Eq. (3). We note, that
Eq. (9) reproduces the power-law exponent of deterministi-
cally chosen scaling factors A and B in Ref. [7].
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We now want to argue why this model is able to capture
the essential features of transport in 2D Hamiltonian sys-
tems with a mixed phase space. The discrete nature of the
Markov model is justified by the presence of invariant
structures in phase space that act as partial barriers (e.g.,
cantori with minimum flux) and that effectively separate
regions where the trajectory spends a long time before
moving to the adjacent one. The specific set of transition
probabilities depends on the precise structure of the phase
space, e.g., the transition probability for a trajectory to
leave a region of area a leaking through a partial barrier
with flux �w is given by �w=a. Area conservation assures
that the flux is the same in both directions and thus the
scaling factors As in Eq. (1) are related to the scaling of
areas of the connected regions, while the factors Bs are
related to the ratio of escape rates.

A typical mixed phase space is hierarchically organized
[17]. While approaching the boundary circle of a given
island of regular motion (level-renormalization [18]) there
are secondary island chains encircling the main one (class-
renormalization [19]). This picture repeats on all scales ad
infinitum. Using these features of a mixed phase space
Meiss and Ott [7] modeled the transport in Hamiltonian
systems as a random walk on a binary tree with fixed
scaling factors for level and class scaling, respectively.
However, typical scaling factors in class scaling and, at
least initially, in level scaling do vary and a more realistic
model must take into account these variations, as it was
suggested in Ref. [7].

Our proposed model with random scaling factors,
Eq. (1), is the simplest of this kind. Let us stress, that it
is not aimed at giving a quantitative estimate of the power-
law exponent, as, e.g., in Ref. [7]. Instead, it elucidates the
qualitative consequences of randomness in the scaling
factors, namely, the presence of a well-defined asymptotic
algebraic decay with a realization-independent power-law
exponent. We do not expect qualitative changes of this

scenario by further refinements of the model, like partly
fixing scaling factors for the modeling of level-scaling or
by changing the number of branches [15].

In order to draw conclusions from our model about
Hamiltonian systems, we make use of the hypothesis that
there exists a universal mechanism generating the hierarch-
ical fine-scale structure of Hamiltonian systems, leading to
a universal distribution of scaling factors. In particular, we
consider different Hamiltonian systems, with respect to
their fine-scale structure, as different realizations from
one statistical ensemble, just as this is the case for a
specific realization of the random scaling factors A and B
in the tree model. The immediate consequence of this
hypothesis and of the realization independence of the
power-law decays found in our model is, that all Hamil-
tonian systems should exhibit the same universal power-
law decay. The numerically observed different power-law
decays over finite times are merely realization-dependent
fluctuations around the universal decay.

As another important consequence, we are now able to
effectively address the practical question of how to nu-
merically determine the universal power-law exponent.
The straightforward approach is to extract it from P�t� of
a single Hamiltonian system determined up to very large
times. However, in order to have a reliable power-law
exponent from a single P�t� one would need much larger
times than in previous studies (which would go beyond
current computational resources). The reason is that the
trajectories of the chosen Hamiltonian system must have
explored a statistically significant sample of the fine struc-
ture of its phase space in order to sample the universal
distribution of scaling factors. Instead, we propose to
average P�t� over different Hamiltonian systems. This
procedure averages out fluctuations and should give a
much better defined power-law decay already for smaller
times, see, e.g., Refs. [1,20]. We stress, that due to the
results of our model such an averaging has a clear meaning:
It is not an average over different power laws, but it
corresponds to a faster reduction of the realization-
dependent fluctuations around the universal decay, ob-
tained by an increased statistical sampling of the universal
distribution of scaling factors.

Guided by this idea we study an ensemble of area
preserving maps of the form pn�1 � pn � V 0�qn�; qn�1 �
qn � pn�1 with V�q� � a

2 q
2 � b

3 q
3 for 100 pairs of pa-

rameters (1< a, b < 2). These maps have a regular island
at (0, 0) and an unstable fixed point at (� a

b , 0). The fine-
scale structure at the border of the regular island is quite
different for all realizations. We start 1011 trajectories
uniformly in a box next to the unstable fixed point, q 2
�� a

b ;�
a
b� ��, p 2 ���; �� with � � 0:01, and choose

the escape region q 
 �a=b. Figure 3 shows the individ-
ual survival probabilities P�t� together with their average.
Note, that the invariant initial condition in the tree model
corresponds in the Hamiltonian system to a uniform initial

FIG. 2 (color online). Power-law exponent zI vs hAi according
to analytic estimate Eq. (9) (line) and from fitting the asymptotic
decay of the numerically computed exact evolution, Eq. (2), for a
single realization of scaling factors (circles). Here the distribu-
tion for the scaling factor As (Bs) is chosen to be uniform on an
interval centered around hAi (hBi � 0:3) with width 0.12 (0.1)
and is independent from Bs (As).
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distribution just in the chaotic component. Numerically,
this initial condition is not achievable. Instead, we choose
an initial condition in a box in the chaotic region far away
from the island, which changes the exponent by one, z �
zI � 1 [21].

The averaged curve in Fig. 3 presents a well-defined
power-law decay with exponent z ’ 1:57� 0:03, where
the error describes the variation for different fitting ranges.
Quite importantly, the variance of the fluctuations around
this averaged power law stays bounded. This agrees with
the prediction of our model [see Fig. 1(c)] and it gives
direct evidence that all individual power-law decays
are consistent with a single universal decay. We find simi-
lar results with the same exponent for an ensemble of
kicked double-harmonic potentials. Motivated by our
work, Altmann [22] studied an ensemble of modified stan-
dard maps, confirming our results qualitatively and
quantitatively.

In conclusion, we conjecture a universal power-law
decay P�t� � t�z from the analysis of a Markov model
with random scaling factors and from the hypothesis of
universality in the statistical properties of the fine-scale
structure of typical Hamiltonian systems. Our numerical
investigations support this hypothesis and suggest the uni-
versal exponent z ’ 1:57� 0:03. Future studies will con-
centrate on a direct extraction of the universal distributions
of area and escape-rate scalings in generic 2D Hamiltonian
systems (both numerically and analytically), that will even-

tually lead to a fully theoretical derivation of the universal
exponent z.
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FIG. 3 (color online). (a) Survival probabilities P�t� for 100
area preserving maps (thin lines), defined in the text, and their
logarithmic average (thick line). Inset: phase space of one of
these maps, showing the main island and the border line to the
escape region. (b) Rescaled survival probabilities P�t�tz with the
fitted exponent z � 1:57 from (a). (c) Variance �2�t� of ln�P�t�tz�
showing boundedness.
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