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With examples of two parallel dielectric gratings and two arrays of thin parallel dielectric cylinders, it is
shown that the interaction between trapped electromagnetic modes can lead to scattering resonances with
practically zero width. Such resonances are the bound states in the radiation continuum first discovered in
quantum systems by von Neumann and Wigner. Potential applications of such photonic systems include:
large amplification of electromagnetic fields within photonic structures and, hence, enhancement of
nonlinear phenomena, biosensing, as well as perfect filters and waveguides for a particular frequency, and
impurity detection.
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Scattering of electromagnetic waves on periodic subwa-
velength structures has shown a number of interesting
phenomena, such as enhanced light transmission through
perforated metal films [1–4], total reflection from thin
dielectric cylinder arrays [5], total light absorption [6],
etc. The detailed mechanisms are still under debate
[3,4,7,8]. However, since the observed phenomena mani-
fest themselves as sharp features in the frequency depen-
dence of the scattering matrix, it appears clear that the
framework of the resonant scattering theory developed in
quantum mechanics [9,10] can be used for their explana-
tion [11,12]. Indeed, there is a close analogy between
quantum mechanical and electromagnetic scattering [13],
and the analytical properties of the scattering amplitude are
expected to be similar in both theories. In quantum me-
chanics, the resonances reflect the transient trapping of the
scattered particle and correspond to the poles of the scat-
tering amplitude on the complex energy plane [13]. In
electromagnetism, periodic subwavelength arrays have
long-lived trapped electromagnetic field modes. These
modes are responsible for the enhanced transmittance
and/or reflectance in the very same way as quasistationary
states in quantum systems are responsible for resonant
peaks in the scattering cross section [11,12].

A long time ago, von Neumann and Wigner showed that
there are quantum systems which have bound states above
the continuum threshold [14]. Later, physical systems with
this remarkable property were found [15]. Finally, it was
proved that bound states in the continuum can occur due to
the direct and via-the-continuum interaction between
quasistationary states [16–18] and can be viewed as reso-
nances with practically infinite lifetimes.

In this Letter, it is demonstrated that a similar phenome-
non occurs in Maxwell’s theory. An electromagnetic wave
of a specific frequency can be trapped forever by a struc-
ture that is neither a metal cavity nor a defect in a photonic
crystal. As examples, we use simple photonic systems: two

arrays of identical dielectric gratings and two arrays of
parallel dielectric cylinders as sketched in Figs. 1 and 2,
respectively. Each single array has a trapped mode which
appears as a scattering resonance. In the double-array
structure, the interaction between trapped modes localized
on each array leads to the formation of two ‘‘molecular’’
resonances. Their properties depend on a continuous pa-
rameter (here, the distance h between the arrays). For a

FIG. 1 (color online). Scattering properties of the double grat-
ing structure in the vacuum sketched in the upper left panel. D is
the period of the grating, and the thickness of the grating is 0:2D.
The grating material (gray) has a dielectric constant " � 4.
(a) shows the specular reflection coefficient R as a function of
the wave vector k and its component kx. (b) and (c) show R
(solid red line) and the electric field (dashed blue line) for the
(b) single and (c) double grating structures. The electric field is
calculated at the position indicated by the red dot on the sketch
of the grating. The amplitude of the incident field is 1. Results
are presented as a function of k for the fixed value of kx � 0:2G.
Values of k range over a neighborhood of the intersection of the
white bar with the maximum of R as indicated in (a).
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particular value of the parameter, the width of one of the
resonances vanishes. This feature is identical to that of the
bound states in the continuum in quantum mechanics. The
possibility of changing the resonance width offers the way
to control the amplification of the electromagnetic fields in
the structure.

The geometry of the studied structures is sketched in
Figs. 1 and 2. The coordinate system is set so that the
structure is invariant in the y direction and periodic in the x
direction (D is the period), and the z axis is normal to the
structure. The electric field is along the y axis (TM polar-
ization). The transmission or reflection properties are cal-
culated within the multiple scattering approach [5,19,20]
for the cylinder array and via the coupled mode solution of
the scattering problem [21] for the dielectric grating.

We first discuss the double dielectric grating. In
Fig. 1(a), the specular reflection coefficient R is presented
as a function of the total wave vector k of the incident
radiation and its component along the x axis kx. The wave
vector is measured in units of the primitive reciprocal
lattice vector G � 2�=D. The sharp resonant features
clearly visible in Fig. 1(a) correspond to the existence of
trapped electromagnetic modes (quasistationary states) in
the structure. The dispersion of the trapped modes with kx
can be inferred from the dependence of R on k and kx. A
dielectric slab possesses stationary wave-guided modes
with frequencies !�kx� below the continuum threshold,
i.e., !�kx�< ck. When the slab is grated, the wave-guided
modes become coupled with the radiative continuum and
turn into resonances because of the possibility of the
reciprocal lattice vector exchange. In the symmetric case
of two equivalent gratings, the trapped modes localized on
each grating interact, forming symmetric and antisymmet-
ric quasistationary states. The degeneracy of the reso-

nances is lifted, and two distinct dispersion curves
emerge split around the dispersion curve of the single
grating. The doubling is clearly seen when comparing
Figs. 1(b) and 1(c) (see the discussion in the next para-
graph). Below the first diffraction threshold k < G� kx,
the trapped modes decay only into the zero diffraction
channel (no change in kx) and thus have the smallest width.
In accordance with general scattering theory, R reaches 1
in this case [11,12]. When k is such that kx may change by
‘G, the resonance width increases as more decay channels
become available. Here ‘ is an integer denoting the dif-
fraction order (diffraction channel).

For kx � 0:2G, the lowest frequency resonance narrows
to the point that it cannot be resolved in Fig. 1(a). The
stabilization of the trapped mode is further illustrated in
Figs. 1(b) and 1(c). The resonance located at k � 0:625G
for the single grating is split into one extremely narrow and
one broad resonance for the double grating. The narrow
resonance has such a small width that it cannot be resolved
in the scale of Fig. 1(c) and appears nearly as a vertical bar.
Note that, because of the interference between nonresonant
and resonant scattering contributions, the reflection coef-
ficient has the Fano profile [22]. For each resonance, it
changes from 1 to 0 on the k scale given by the width as
seen for the broader resonance in Fig. 1(c). The narrow
resonance has the inverted profile as compared to the broad
one. The long-lived quasistationary state corresponds to a
large amplification of the resonance field at the structure.

Results for the double array of thin dielectric cylinders
are presented in Fig. 2. In contrast to the dielectric grating
case, this structure is basically transparent. The scattering
is dominated by the resonant contributions, and the reflec-
tion coefficient is close to zero except at the resonances
located just below the diffraction thresholds [5,20]. The
doubling of the resonances is not observed here because
the higher frequency state is shifted above the first diffrac-
tion threshold and strongly broadened (see Fig. 4). The
comparison of the scattering properties of the single
[Fig. 2(b)] and double [Fig. 2(c)] cylinder arrays leads to
observations similar to those reported for the dielectric
grating: (i) The resonance located below the first diffrac-
tion threshold is associated with the 100% reflection;
(ii) the lowest frequency (symmetric) state of the double
structure has a very small width, much smaller than the
width of the resonance of the single array; (iii) the long-
lived trapped mode is associated with a strong field
enhancement.

To qualitatively understand the physics behind the stabi-
lization phenomenon, it is convenient to take the example
of thin dielectric cylinders where the narrow resonance
contribution dominates the scattering. For a large distance
between the two arrays h, the interaction through evanes-
cent fields in closed diffraction channels (j‘G� kxj> k)
can be neglected. If only the zero diffraction channel is
open, the transmission amplitude t2 can be obtained from a
Fabry-Perot–type approach:

FIG. 2 (color online). Scattering properties of the periodic
double array of dielectric cylinders in the vacuum sketched in
the upper left panel. The dielectric constant of the cylinders
" � 2. For the detailed description, see the caption of Fig. 1. The
electric field [(b),(c)] is calculated at the center of the cylinder
for the incident field amplitude of 1 and fixed value of kx �
0:2G.
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 t 2 �
t2

1 exp�ikzh�

1� fr1 exp�ikzh�g2
; (1)

where t1 (r1) is the transmission (reflection) amplitude for
a single array and kz is the wave vector component per-
pendicular to the array. Since the reflection coefficient of
the single array reaches 1 at the resonance, t1 and r1 can be
approximated by the Breit-Wigner form [23]:

 t 1 � 1�
i�=2

!�!0 � i�=2
; r1 � 1� t1; (2)

where !0 � !0�kx� and � � ��kx� are, respectively, the
frequency and width of the resonance. From Eqs. (1) and
(2) one obtains the frequencies !� and widths �� of the
symmetric (� ) and antisymmetric (� ) states appearing
as the poles of t2:

 !� � !0 � � sin�kzh�=2; (3)

 �� � �	1� cos�kzh�
; (4)

where kz obeys the energy conservation condition: !� �

c
����������������
k2
z � k2

x

q
. The resonances are split because of the inter-

action through the propagating fields.
Whenever kzh � n� , with n being an integer, the trans-

mission coefficient as a function of k shows a rapid change
from 1 to zero associated with a narrow resonance close to
k � !0=c. When kzh � n� holds exactly, (i) the symmet-
ric or antisymmetric state has the vanishing width, and
(ii) both !� and !� are equal to !0 (the states are
degenerate) and the transmission drops to zero. Since at
!0 the single array is 100% reflective, the situation is
analogous to the resonator made of perfectly reflective
mirrors where the modes trapped between two arrays are
decoupled from the continuum.

For small h, the interaction through evanescent fields in
closed channels permanently lifts the degeneracy of the
states. By using the formalism of [21] for one open and one
closed channel, we obtain:

 !� � !0 � � sin�kzh�=2� �kz exp���h�=2�; (5)

 �� � �	1� cos�kzh�
; (6)

where !� � c
����������������
k2
z � k2

x

q
� c

���������������������������������
�kx �G�2 � �2

p
. Whenever

kzh � n�, the symmetric or antisymmetric state has zero
width, similar to the large distance case. The other reso-
nance acquires the double width.

The calculated dependence of the frequencies and
widths of the resonances on the distance h is presented in
Fig. 3 (Fig. 4) for the case of dielectric gratings (cylinders).
The splitting between symmetric and antisymmetric reso-
nances with decreasing h is clearly visible. In the case of
dielectric cylinders, for h� 2:75D the antisymmetric state
is shifted above the first diffraction threshold k � G� kx.

Clearly, for well-defined values of h, the width of the
symmetric (antisymmetric) mode vanishes while the other

mode broadens. The mode stabilization occurs when the
resonance frequency of the double layer structure closely
matches the frequency of the standing wave in the structure
[black depletions in Figs. 3(a) and 4(a)]. The electric field
of the trapped mode grows with decreasing resonance
width. Figures 3 and 4 show the examples where the
105-fold field enhancement was obtained at the resonance.
Eventually, the electric field diverges when the resonance
turns into a bound state. At the same time, this state is
decoupled from the continuum and cannot be populated by
the incoming light. It is noteworthy that the bound state
corresponds to the mode propagating along the structure
without radiation losses. Thus, such a basically transparent
system as a double array of thin dielectric cylinders can
serve as a perfect waveguide.

How general is this phenomenon? A typical subwave-
length periodic array has a reflectance or transmittance
resonance with a lifetime determined by the structure
geometry and material. Suppose that there are two such

FIG. 3 (color online). Double grating structure. (a) shows the
specular reflection coefficient as a function of the wave vector k
of the incident radiation and the distance h between the gratings
for the fixed value of kx � 0:2G. S (A) stands for the symmetric
(antisymmetric) mode. The white horizontal line indicates the
opening of the first diffraction channel. (b) and (c) show the
absolute value of the electric field for the (b) symmetric and
(c) antisymmetric trapped modes. Results are presented as
functions of the x (z) coordinate parallel (perpendicular) to the
structure. The amplitude of the incident field is 1. The fields are
obtained for values of �k; h� indicated by white circles in (a). The
grating position is indicated with black lines.
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identical structures. The quasistationary states of the joint
system result from the interaction between the degenerate
resonances localized on each structure. The interaction
depends continuously upon the distance between the ar-
rays. If one demands that each resonance decays through
only one open channel (e.g., the zero-order diffraction),
then the resulting system is identical to the quantum system
considered in Refs. [16,17]. Given the similarity of
Maxwell and Schrödinger’s stationary equations, the
Feshbach projection formalism [9] can be used to prove
that, for a given value of the parameter, one resonance of
the joint structure has the vanishing width. It becomes a
bound state in the continuum. It is noteworthy that the
above phenomenon should be at the origin of the recently
reported unusually strong optical interactions between the
scatterers in waveguides [24]. It should also occur for the
plasmonic gratings [25].

In summary, it has been shown that two interacting
resonances in subwavelength periodic arrays may produce
a scattering resonance with vanishing width. It represents a
bound state in the radiation continuum, where the electro-
magnetic field is trapped by the structure for infinite time.
Photonic nanostructures with bound states in the radiation
continuum may have a variety of potential applications.
Here are a few. First, controlling the width of the scattering
resonance or the lifetime of the corresponding trapped
mode offers a possibility of a strong enhancement of
electromagnetic fields within subwavelength arrays.
Therefore, such a photonic structure can be used for effi-
cient biosensing as well as to study various nonlinear
phenomena. Second, a structure with a bound state in the
radiation continuum may serve as a perfect filter or wave-

guide for the resonant frequency. Finally, it is worth noting
that a nanophotonic structure tuned to have a bound state in
the continuum can be used as a detector for impurities
within the structure. The reason is that the impurity-
induced scattering leads to the decay of the bound state.
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FIG. 4 (color online). Double dielectric cylinder array.
(a) shows the specular reflection coefficient. (b) shows the
absolute value of the electric field for the symmetric trapped
mode. For further details, see the caption of Fig. 3.
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