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We report fine-tuning of nonlinear interactions in a solid-state ring laser gyroscope by vibrating the gain
medium along the cavity axis. We demonstrate both experimentally and theoretically that nonlinear
interactions vanish for some values of the vibration parameters, leading to quasi-ideal rotation sensing. We
eventually point out that our conclusions can be mapped onto other subfields of physics such as ring-
shaped superfluid configurations, where nonlinear interactions could be tuned by using Feshbach
resonance.
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As pointed out in [1], most physical properties of lasers,
superconductors, superfluid liquids and Bose-Einstein con-
densed gases come from the same phenomenon of macro-
scopic occupation of one or a few discrete quantum states.
The possibility of exploiting those properties in ring-
shaped configurations to create a new class of resonant
rotation sensors, early suggested by [2,3], has been dem-
onstrated experimentally on various physical systems [4–
8]. All those macroscopic quantum devices share in com-
mon the fact that nonlinear interactions play a crucial role
in their dynamics and can hinder or affect their ability to
sense rotation, even when counteracted by other coupling
sources [9]. Such interactions come, for example, [10]
from the nonlinear properties of the laser gain medium in
coherent photon optics and from elastic s-wave collisions
in coherent atom optics.

The possibility of tuning or even suppressing nonlinear
interactions in resonant macroscopic quantum rotation
sensors hence appears as an important way of improving
their characteristics. On that score, the experimental
achievement of scattering length tuning by magnetically-
induced Feshbach resonance in a Bose-Einstein conden-
sate [11,12] opens new perspectives not only for coherent
atom optics in general [13] but also more specifically for
the field of rotation sensing with ring-shaped atom lasers,
although in this latter case technical complexity has so
far impeached the achievement of any interaction-free
experiment.

Following the analogy between photon and atom optics
[10], we present in this Letter a study of the control of
nonlinear interactions in a solid-state ring laser. In this
system, such interactions result mainly from mutual cou-
pling between the counterpropagating modes induced by
the population inversion grating established in the ampli-
fying medium [14,15]. Their control is hence achieved by
vibrating the gain crystal along the optical axis of the
cavity. Using the quantitative information on the strength
of the nonlinear interactions provided by the beat note

between the counterpropagating laser beams [7], we dem-
onstrate experimentally the possibility of suppressing these
interactions for some discrete values of the amplitude of
the crystal movement, leading to quasi-ideal rotation sens-
ing on this device. In the limit of high vibration frequen-
cies, we eventually show that the very simple rotation
sensing condition derived for the solid-state ring laser
can be mapped onto the equivalent condition for a toroidal
Bose-Einstein condensed gas with scattering length tuning,
issued from the combination of the toy model of [9] and of
the simple description of Feshbach resonance presented in
[11], which suggests that interaction control for the latter
device could also improve its gyroscopic characteristics.

The solid-state ring laser gyroscope can be described
semiclassically, assuming one single identical mode in
each direction of propagation (something which is guaran-
teed by the attenuation of spatial hole burning effects
thanks to the gain crystal movement [16]), one single
identical state of polarization and plane wave approxima-
tion. The electrical field inside the cavity can then be
written as follows:
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the angular and spatial average frequencies of the laser,
whose longitudinal axe is associated with the x coordinate.
In the absence of crystal vibration, the equations of evolu-
tion for the slowly varying amplitudes ~E1;2 and for the
population inversion density N have the following expres-
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where �1;2 are the intensity losses per time unit for each
mode, ~m1;2 are the backscattering coefficients, � is the
difference between the eigenfrequencies of the counter-
propagating modes (including the effect of rotation, see
further), � is the laser cross section, T is the cavity round-
trip time, � is the relative excess of pumping power above
the threshold value Wth, T1 is the lifetime of the population
inversion and a is the saturation parameter. Throughout
this Letter we shall neglect dispersion effects, considering
the fact that the Nd-YAG gain width is much larger than the
laser cavity free spectral range. The backscattering coef-
ficients, which depend on spatial inhomogeneities of the
propagation medium [17], have the following expression
[18]:
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where "�x� and ��x� are, respectively, the dielectric con-
stant and the fictitious conductivity along the cavity pe-
rimeter in the framework of an Ohmic losses model [19],
where c is the speed of light in vacuum and where �" stands
for the spatial average of ". In order to counteract mode
competition effects and ensure beat regime operation under
rotation, an additional stabilizing coupling as described in
[7] is introduced, resulting in losses of the following form:

 �1;2 � ���1;2Ka�j ~E1j
2 � j ~E2j

2�; (2)

where � � ��= �" is the average loss coefficient and where
K > 0 represents the strength of the stabilizing coupling.

We assume the following sinusoidal law to account for
the gain crystal vibration:

 xc�t� �
xm
2

sin�2�fmt�; (3)

where xc�t� is the coordinate, in the frame of the laser
cavity, of a given reference point attached to the crystal,
and where xm and fm are, respectively, the amplitude and
the frequency of the vibration movement. The population
inversion density function in the frame of the vibrating
crystal Nc�x; t� is ruled by the following equation:
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where E�x; t� refers to the electric field in the cavity (non-
vibrating) frame. Moreover, Nc�x; t� can be deduced from
its equivalent in the cavity frame N�x; t� by the identity
Nc�x; t� � N�x� xc�t�; t�, resulting in the following ex-
pressions:
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The backscattering coefficients (1) acquire in the presence

of the crystal vibration the following time-dependent form:
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where ~mc
1;2 and ~mm

1;2, which are time independent, account
for the backscattering due, respectively, to the crystal at
rest and to any other diffusion source inside the laser cavity
(including the mirrors). As regards the difference � be-
tween the eigenfrequencies of the counterpropagating
modes, it is due to the combined effects of the rotation
(Sagnac effect [20]) and of the crystal movement in the
cavity frame (Fresnel-Fizeau drag effect [21]), resulting in
the following expression:
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where A is the area enclosed by the ring cavity, � �
2�c=!c is the emission wavelength, _� is the angular
velocity of the cavity around its axis, and l and n are,
respectively, the length and the refractive index of the
crystal (dispersion terms are shown to be negligible in
this case).

The dynamics of the solid-state ring laser gyroscope
with a vibrating gain medium is eventually ruled, in the
framework of our theoretical description, by the following
equations:
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where �1;2, xc,Nc, ~m1;2 and � obey, respectively, Eqs. (2)–
(6). It comes out from this analysis that the solid-state ring
laser benefits, as a rotation sensor, from the crystal vibra-
tion in three separate and complementary ways: (i) the
contrast of the population inversion grating, which is re-
sponsible for nonlinear coupling, is reduced on both con-
ditions that the amplitude of the movement is of the same
order of magnitude than the step of the optical grating
(typically a fraction of �m) and that the period of the
movement 1=fm is significantly larger than the population
inversion response time T1; the atomic dipoles are then no
longer confined into a nodal or an antinodal area—see
Eq. (4)—, and become sensitive to the time-average value
of the electric field, which can be independent of their
position on the crystal (at least when the laser is not
rotating) provided the condition J0�kxm� � 0 is obeyed
[22], J0 referring to the zero-order Bessel’s function;
(ii) the light backscattered on the gain crystal from one
mode into the other can be shifted out of resonance by the
Doppler effect resulting from the crystal movement in the
cavity frame; this phenomenon, which induces a decrease
of the corresponding coupling strength, has previously
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been reported in the case of vibrating mirrors [23,24]; in
our model, it arises from the time-dependent phase factors
exp��2ikxc� in front of the coupling coefficients ~mc

1;2 andR
Ncdx in Eqs. (5) and (7); (iii) the frequency nonreciproc-

ity between the counterpropagating modes due to the
Fresnel-Fizeau dragging effect—Eq. (6)—has a similar
role as the mechanical dithering typically used for circum-
venting the lock-in problem in the case of usual gas ring
laser gyroscopes [25].

The solid-state ring laser setup we used in our experi-
ment is sketched on Fig. 1. Thanks to the additional
stabilizing coupling (2), a beat note signal is observed
above a critical rotation speed, whose frequency is plotted
on Fig. 2. It can be seen on this figure that the difference
between the ideal Sagnac line and the experimental beat
frequency, which is a direct measurement of the nonlinear
interactions [7], is considerably reduced in the zone rang-
ing from 10 to 40 deg =s. Some nonlinearities are observed
around the discrete values _� ’ 55 deg =s and _� ’
165 deg =s, in agreement with our theoretical model. As
a matter of fact, analytical calculations starting from
Eq. (7) reveal the existence of disrupted zones centered
on discrete values of the rotation speed _�q obeying the
following equation:

 

4A
�L

_�q � qfm where q is an integer; (8)

the size of each disrupted zone being proportional to
Jq�kxm�. With our experimental parameters, the first criti-
cal velocity corresponds to _�1 � 55:5 deg =s, the zones
observed on Fig. 2 corresponding to the cases q � 1 and
q � 3. The numerical simulations shown on the insert of
this figure are in good agreement with our analytical and
experimental data. Such a phenomenon of disrupted zones

has been reported previously in the case of gas ring laser
gyroscopes with mechanical dithering [25].

The dependence of the beat frequency on the amplitude
of the crystal movement is shown on Fig. 3, for a fixed
rotation speed (200 deg =s). This graph illustrates the good
agreement between our numerical simulations and our
experimental data. Moreover, this is an experimental dem-
onstration of the direct control of the strength of nonlinear
interactions in the solid-state ring laser. In particular, for
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FIG. 1 (color online). Scheme of our experimental setup. The
diode-pumped vibrating Nd-YAG crystal is placed inside a 22-
cm ring cavity on a turntable. Losses of the form (2) are created
by a feedback loop acting on a Faraday rotator (an additional
YAG crystal inside a solenoid), in combination with a polarizing
mirror and a slight nonplanarity of the cavity (not drawn here).
Two photodiodes are used for generating the error signal of the
feedback loop. A third photodiode measures the frequency of the
beat note between the counterpropagating modes.
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FIG. 2. Experimental beat frequency as a function of the
rotation speed. White and black circles refer, respectively, to
the situations where the crystal is at rest and where the crystal is
vibrating with a frequency fm ’ 40 kHz and an amplitude xm ’
0:74 �m. The inset shows a magnification around _�1 —see
Eq. (8)—, together with theoretical predictions resulting from
numerical simulations with the following measured [18] parame-
ters: � � 15:34� 106 s�1, � � 0:21, j ~mc

1;2j � 1:5� 104 s�1,
j ~mm

1;2j � 8:5� 104 s�1, arg� ~mc
1= ~mc

2� � arg� ~mm
1 = ~mm

2 � � �=17,
K � 107 s�1. Integration step is 0:1 �s, average values are
computed between 8 and 10 ms.
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FIG. 3 (color online). Beat frequency as a function of the
amplitude of the crystal movement for _� � 200 deg =s. The
theoretical values (crosses) come from the numerical integration
of Eq. (7) with the same parameters as Fig. 2.
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some special amplitudes of the crystal movement, the
influence of mode coupling vanishes, resulting in a beat
frequency equal to the ideal Sagnac value.

This study suggests the use of a higher vibration fre-
quency of the crystal, in order to increase the value of _�1 as
much as possible. When fm � j�j=�2��, the strength of
the nonlinear interactions is shown to be directly propor-
tional to J0�kxm�

2, and the condition for rotation sensing
reads

 2K�> ~NJ0�kxm�2; (9)

where ~N � ��=�1��2T2
1� is the strength of nonlinear

interactions [7], and J0�kxm�2 is the attenuation factor due
to the crystal vibration. The similar condition for rotation
sensing in the case of a toroidal Bose-Einstein condensate,
as derived in [9], is V0 > g [where V0 is the asymmetry
energy and g the mean (repulsive) interaction energy per
particle in the s-wave state]. It becomes, in the presence of
Feshbach resonance induced by a magnetic field B as
described in [11]:

 V0 > g
�
1�

�

B� B0

�
; (10)

where � and B0 are characteristic parameters. In this
equation, g represents the nonlinear interactions, and the
attenuation factor is 1� �=�B� B0�. Condition (10)
shows strong similarities with condition (9). In both cases,
rotation sensing is favored if nonlinear interactions are
lowered, the ideal case being 1� �=�B� B0� � 0 for
the toroidal Bose-Einstein condensed gas and J0�kxm� �
0 for the solid-state ring laser. The parameter for the
control of nonlinear interactions is the magnetic field B
in the first case and the movement amplitude xm in the
second case.

In conclusion, we have developed a concrete method for
tuning and suppressing nonlinear interactions in the case of
a solid-state ring laser, by vibrating the gain crystal along
the cavity axis. The value of the beat note frequency
provides a direct measurement of the strength of nonlinear
interactions, allowing the experimental proof of their fine-
tuning. Our theoretical model shows a very good agree-
ment with the experiment. This work demonstrates that
interactions control in a resonant macroscopic quantum
device can lead to quasi-ideal rotation sensing in the case
of a solid-state ring laser. Furthermore, following the anal-
ogy between photon and atom optics, we have pointed out
that the rotation sensing condition for our experimental

device can be mapped onto other systems like ring-shaped
Bose-Einstein condensed gas with magnetically induced
Feshbach resonance. This suggests that scattering length
control of ultracold quantum gases in toroidal traps could
dramatically improve their gyroscopic capacity, which
could open the way to a new generation of atomic rotation
sensors.
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