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The orientation fluctuations of the director of a liquid crystal are measured, by a sensitive polarization
interferometer, close to the Fréedericksz transition, which is a second-order transition driven by an electric
field. We show that, near the critical value of the field, the spatially averaged order parameter has a
generalized Gumbel distribution instead of a Gaussian one. The latter is recovered away from the critical
point. The relevance of slow modes is pointed out. The parameter of the generalized Gumbel distribution
is related to the effective number of degrees of freedom.
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The fluctuations of global quantities of a system formed
by many degrees of freedom have very often a Gaussian
probability density function (PDF). This result is a conse-
quence of the central limit theorem, which is based on the
hypothesis that the system under consideration may be
decomposed into many uncorrelated domains. However,
if this hypothesis is not satisfied, then the PDF of global
quantities may take a different form. A few years ago it was
proposed [1–6] that, in spatially extended systems, where
the correlation lengths are of the order of the system size,
the PDF Pa��� of a global quantity � takes under certain
conditions [6] a form which is very well approximated by:
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��a�

exp�� afba��� sa�
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where ��a� is the Gamma function. This distribution
Pa���, named the generalized Gumbel distribution (GG),
is for a an integer the PDF of the fluctuations of the ath
largest value for an ensemble of N random and identically
distributed numbers. Instead, the interpretation of a non-
integer a is less clear and has been discussed in Ref. [7].
For a � �=2, the distribution Pa is approximately the
Bramwell-Holdsworth-Pinton distribution. It has been
shown in Refs. [5,7] that the GG appears in many different
physical systems where finite size effects are important. An
example of these non-Gaussian fluctuations is the magne-
tization of the two-dimensional XY model which presents a
Kosterlitz-Thouless transition as a function of temperature.
When the control parameter is close to the critical value,
the correlation length of the system diverges, and, when it

becomes of the order of the system size, then the PDF of
the fluctuations of the magnetization has a GG form instead
of the Gaussian one [1]. Several other examples where the
GG gives good fits of the PDF of the fluctuations of global
parameters are the magnetization in Ising model close to
the critical temperature, the energy dissipated in the forest
fire model, the density of relaxing sites in granular media
models, and the power injected in a turbulent flow and in
electroconvection [1–8]. Except for the two last examples,
which use experimental data, all of the other mentioned
results are obtained on theoretical models. Therefore, it is
of paramount importance to check whether the above-
mentioned theoretical predictions on GG can be observed
experimentally in other phase transitions. We report in this
Letter the first experimental evidence that, close to the
critical point of a second-order phase transition, the PDF
of a spatially averaged order parameter takes the GG form
when the correlation length is comparable to the size of the
measuring region. The Gaussian distribution is recovered
when the system is driven away from the critical point. We
also stress that the deviations to the Gaussian PDF are
produced by very slow frequencies.

In our experiment, these properties of global variables
have been studied by using the Fréedericksz transition of a
liquid crystal (LC) submitted to an electric field ~E [9,10].
In this system, the measured global variable � is the
spatially averaged alignment of the LC molecules, whose
local direction of alignment is defined by the unit vector ~n.
Let us first recall the general properties of the Fréedericksz
transition. The system under consideration is a LC con-
fined between two parallel glass plates at a distance L (see
Fig. 1). The inner surfaces of the confining plates have
transparent indium-tin-oxide (ITO) electrodes, used to ap-
ply the electric field. Furthermore, the plate surfaces are
coated by a thin layer of polymer mechanically rubbed in
one direction. This surface treatment causes the alignment
of the LC molecules in a unique direction parallel to the
surface (planar alignment); i.e., all of the molecules have
the same director parallel to the x axis and ~n � �1; 0; 0�
(see Fig. 1) [11]. The LC is submitted to an electric field
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perpendicular to the plates. To avoid the electrical polar-
ization of the LC, the electric field has a zero mean value,
which is obtained by applying a sinusoidal voltage V at a
frequency of 1 kHz between the ITO electrodes, i.e., V ����

2
p
V0 cos�2�� 1000t� [9,10]. When V0 exceeds a critical

value Vc, the planar state becomes unstable, and the LC
molecules, except those anchored to the glass surfaces, try
to align parallel to the field; i.e., the director, away from the
confining plates, acquires a component parallel to the
applied electric field (z axis) [see Fig. 1(a)]. This is the
Fréedericksz transition, which is a structural transforma-
tion whose properties are those of a second-order phase
transition [9,10]. For V0 close to Vc, the motion of the
director is characterized by its angular displacement � in
the xz plane [Fig. 1(b)], whose space-time dependence has
the following form: � � �0�x; y; t� sin��zL � [9,10,12]. If �0

remains small, then its dynamics is described by a
Ginzburg-Landau equation, and one expects mean-field
critical phenomena [9,10,12], in which �0 is the order

parameter and � �
V2

0

V2
c
� 1 is the reduced control parameter.

The global variable of interest is the spatially averaged
alignment of the molecules, precisely � � 2

L �R
L
0 h�1� n

2
x�ixy dz ’

RR
A �

2
0dxdy=A, where A � �D2=4 is

the area of the measuring region of diameter D in the �x; y�
plane and h:ixy stands for mean on A. As � is a global
variable of this system, its fluctuations, induced by the
thermal fluctuations of �0, depend on the ratio between
D and the correlation length � of �0. The angle �0 is a
fluctuating quantity whose correlation length and correla-
tion time are, respectively, � � L��

���
�
p
��1 and � � �0=�,

where �0 is a characteristic time which depends on the LC
properties and L2 [9,10,12]. Many aspects of the director
fluctuations, such as power spectra and correlation lengths,
at the Fréedericksz transition have been widely studied
both theoretically [9,10,12] and experimentally [13–16].
However, the statistical properties of the spatially averaged
director fluctuations have never been characterized as a

function of the ratio Neff � D=�. As this ratio is the key
parameter of our study, we have performed the experiment
in cells with three different thicknesses: L � 25 �m, L �
20 �m, and L � 6:7 �m. The results reported here are
mainly those of the thinner cell, and a detailed comparison
with those of the others will be the aim of a longer paper.
The cells are filled by a LC having a positive dielectric
anisotropy �a [p-pentyl-cyanobiphenyl (5CB) produced by
Merck]. For this LC, Vc � 0:720 V and �o � 55 ms in the
cell with L � 6:7 �m.

Let us describe now how � has been measured. The
deformation of the director field produces an anisotropy of
the refractive index of the LC cell. This optical anisotropy
can be precisely estimated by measuring the optical path
difference � between a light beam crossing the cell line-
arly polarized along the x axis (ordinary ray) and another
beam crossing the cell polarized along the y axis (extraor-
dinary ray). The experimental setup employed is schemati-
cally shown in Fig. 1(c). The beam is produced by a
stabilized He-Ne laser (	 � 632:8 nm) and focused into
the liquid crystal cell by a converging lens (focal length
f � 160 mm). A second lens with the same focal length is
placed after the cell to have a confocal optical system,
which ensures that inside the cell the laser beam is parallel
and has a diameter D of about 125 �m. The beam is
normal to the cell and linearly polarized at 45	 from the
x axis, i.e., can be decomposed in an extraordinary beam
and in an ordinary one. The optical path difference, be-
tween the ordinary and extraordinary beams, is measured
by a very sensitive polarization interferometer [17]. After
some algebra, the phase shift � is given by:

 ��
�

2�
	

Z L

0

�
none����������������������������������������������

n2
0 cos���2� n2

e sin���2
q � n0

�
dz
�
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with �no; ne� the two anistotropic refractive indices [9,10].
In terms of �, we get

 � � �0

�
1�

ne�ne � no�

4n2
o

�
�
; �0 


2�
	
�ne � no�L:

(4)

The phase �, measured by the interferometer, is acquired
with a resolution of 24 bits at a sampling rate of 1024 Hz.
The instrumental noise of the apparatus [17] is 3 orders of
magnitude smaller than the amplitude 
� of the fluctua-
tions of � induced by the thermal fluctuations of �.

We first check the accuracy of our experimental setup by
measuring the time average h�i of the global variable �
and compare it to the results of a mean-field theory. In
Fig. 2, we plot the measured h�i versus the control pa-
rameter �. h�i vanishes for � < 0 and increases for � > 0.
The experimental results are in very good agreement with
theoretical predictions based on the Ginzburg-Landau
equation using the physical properties of this LC without
adjustable parameters. This excludes the presence of the
weak anchoring effects described in literature [10,11]. We
observe that the model is valid even for large values of �.
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FIG. 1. (a) The geometry of the Fréedericksz transition: direc-
tor configuration for V0 < Vc and director configuration for V0 >
Vc. (b) Definition of angular displacement � of one nematic ~n.
(c) Experimental setup. A polarized laser beam is focused into
the LC cell, and a polarization interferometer measures the phase
shift � between the ordinary and extraordinary rays [17].
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The rounding near the transition is a finite size effect
because in our experiment Neff ’ 1 for � ’ 0. Indeed, cells
with the larger L show an even more pronounced rounding
effect close to the transition.

To shed some light on the dynamics of the fluctuations,
we first measure the power spectral density S� of �. As the
slow thermal drift of the interferometer may perturb the
statistics of the acquired signals, � is high-pass filtered at
2 mHz. The power spectra S�, measured at � � 0:16 and
� � 0:002, are plotted in Fig. 2. They can be fitted by a
Lorentzian for � > 0:

 S� �
S0���

1� �f=fc����2
: (5)

S0��� represents the amplitude of fluctuations, and fc��� is
proportional to the inverse of the relaxation time ���� of �0

[fc � �����1]. This form is the same found by Galatola
for light-scattering measurements [14,15], but we have
increased the resolution at low frequencies of about 3 or-
ders of magnitude. The values of S0 and fc are obviously
dependent on � and its sign. For � < 0, S� is the sum of two
Lorentzian functions with two cutoff frequencies. Each
frequency corresponds to a relaxation of the director of
the LC in two different directions. The lowest frequency,
which corresponds to �, depends on � contrary to the other
frequency. The cutoff frequency fc decreases with � with a
linear behavior as predicted by the Ginzburg-Landau
model, i.e., 1=� � �=�o, where the value of �0 agrees
with that obtained from the LC parameters. The amplitude

S0 has a complex dependence on �. This dependence,
which can be understood on the basis of the Ginzburg-
Landau model, is not relevant for the results presented in
this Letter and will be discussed in a longer report.

We now turn to the main point of this Letter, that is, the
statistical description of the fluctuations of �. We consider
the normalized order parameter: y � ��h�i

� , where�2 is the
variance of �. The probability density functions of y are
plotted in Fig. 3 for three different values of �. We find that,
far from the critical value (� � 0:16), the distribution is
Gaussian [Fig. 3(a)]. In contrast, for a value of � closer to 0,
typically �� 2� 10�3, the PDF of fluctuations of � are
not Gaussian as is clear from Fig. 3(d). In Figs. 3(b) and
3(c), we plot the distribution of � for two intermediate
values of �. The exponential tail becomes more pro-
nounced when � decreases. We want now to compare this
distribution to a GG [Eq. (1)]. The value of the free
parameter a is given by the skewness of the fluctuations
[4]:

 ��hy3i��

�
d3 ln��a�

da3

���
d4 ln��a�

da4

�
3=2
��1=

���
a
p
: (6)

We obtain a � 2:95 at �� 2� 10�3, a � 6:6 at �� 4�
10�3, and a � 23:5 at �� 8� 10�3. By using these values
in Eq. (1), we get the PDFs plotted in Fig. 3 as continuous
lines, which agree quite well with the experimental distri-
butions. The observation of the GG for � very close to 0 is
the main result of this Letter. One may wonder why the GG
is observed in our experiment and not in other experiments
on phase transitions. To answer this question, let us first
consider the slow modes of � whose relevance for the GG

FIG. 3. (a)–(d) PDF of y � ��h�i
� at �� 0:16, 8� 10�3, 4�

10�3, and 2� 10�3, respectively. The dashed line is a Gaussian
fit. In (b)–(d), the continuous lines are the GG distributions with
a � 23:5, 6.6, and 2.95, respectively.

〈
〉

FIG. 2. (a) Average value of the global variable � as a function
of � (\circ ). The continuous line is a theoretical prediction based
on the Ginzburg-Landau equation for �0 using the values of this
LC, with no adjustable parameters. (b) Power spectrum S� and
the Lorentzian fit (continuous line) measured at � � 2� 10�3

(\circ ) and at � � 0:16 (�).
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distribution has been pointed out in Ref. [5]. To confirm
this point, the time evolution of � acquired at � � 2�
10�3 is high-passed filtered at various cutoff frequencies
fHP. The skewness � of the filtered signal is plotted as a
function of fHP [Fig. 4(a)]. When fHP is increased, we see
that the skewness decreases (��1 is linear in fHP). A
Gaussian behavior is retrieved for fHP > 10fc ’ 0:1 Hz.
These experimental results indicate that the slow modes,
with frequency lower than fc, are responsible for the non-
Gaussian PDF of this global parameter. Previous experi-
ments on the Fréedericksz transition did not have a suffi-
cient resolution at low frequencies, and they erased this
effect. Let us now consider the correlation length � of �0 in
the plane �x; y�. This correlation length has to be compared
with the diameter of the measuring volume, which, in our
experiment, is determined by the laser beam diameter D
inside the cell. At � � 0:002, we find � � 47 �m, that is,
��D=3. In other words, the laser detects the fluctuations
of only a few coherent domains, and, in agreement with the
theoretical predictions, these fluctuations have the GG
distribution. The effective number of degrees of freedom
of the system is related to the ratio Neff � D=� /

���
�
p

. In
Fig. 4(b), we plot the values of the skewness as a function
of �. We observe that � goes to zero for increasing � and
the Gaussian behavior is retrieved for � > 0:03. The in-

verse of � is linear in �, that is, ��1 � �
���
a
p
� p� q� �

p� ~qN2
eff . We measure p � �0:51 and q � �521. Thus,

the free parameter a of the GG is a measure of the effective
number of degrees of freedom as underlined in
Refs. [4,18]. For the magnetization of the two-dimensional

XY model, it has been found that ��1 ��
���
a
p
��

���
2
�

q
�1�

1
2 �
Neff

2� �
2�. The dependence of

���
a
p

on Neff is the same as in
our experiment, but the coefficients depend on the system.
As the � is proportional to the cell thickness, we have
verified that, for cells having larger L, the GG is obtained
for larger values of �. This is indeed the case, and the
detailed description of the results of the other cells will be
the subject of a long article.

In conclusion, we have experimentally shown, by using
the Fréedericksz transition of a LC, that in a second-order
phase transition the fluctuations of a spatially extended
quantity have a GG distribution if the coherence length is
of the order of the size of the measuring area. The slow
modes, corresponding to large scales, are responsible for
this non-Gaussian behavior. This observation confirms
several theoretical predictions on GG, which have never
been observed before in an experiment on a phase
transition.
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