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We show that correlation and entanglement dynamics of spin systems can be precisely controlled and
engineered using only a small number of external physical control parameters. We first point out that the
correlation dynamics of such systems can be understood in terms of spin-wave propagation, giving a
simple physical explanation of the behavior seen in a number of recent works. We then extend this picture
to more realistic translationally invariant systems prepared in product states. Since spin waves propagate
according to a system’s dispersion relation which typically depends on external physical parameters, this
insight provides a convenient way to understand how dynamics can be controlled. We demonstrate these
ideas in a simple example system, showing that correlations can be made to propagate in well-defined pack-
ets whose speed can be engineered in advance, controlled during the evolution, or even stopped altogether.
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Correlations play a predominant role in the study of spin
systems. On the one hand, they characterize different
phases of matter, and thus can help reveal the mechanisms
underlying phase transitions. On the other, they are directly
related to the entanglement between different spins, which
can be exploited by applications in the field of quantum-
information processing. Whereas so far, much of the work
on correlations has focused on the static properties of equi-
librium systems, an increasing interest in the correspond-
ing dynamical properties has developed over the last few
years. The reason is twofold. First, new experimental set-
ups, such as atoms in optical lattices, have reached an un-
precedented level of control, allowing physical parameters
to be changed during the experiments. Thus theoretical de-
scriptions of the time-dependent properties of such systems
have become important. Second, it has been recognized
that the way entanglement is created and how it propagates
are important fundamental questions in quantum-
information theory. In particular, the answers may influ-
ence the design of quantum repeaters and networks, whose
goal is to establish as much entanglement as possible
between different nodes in the shortest possible time.

The time evolution of correlation functions in spin sys-
tems has been studied in various scenarios, mainly from a
condensed matter physics perspective [1], all of which
show correlations propagating at a finite speed. Indeed,
Ref. [2] showed that the propagation speed is necessarily
finite. On the other hand, information and entanglement
propagation in spin systems has mostly been studied from a
quantum-information perspective [3]. In contrast with pre-
vious work, we will consider to what extent it is possible to
control the propagation speed and dispersion of the corre-
lations in a translationally invariant system, by manipulat-
ing only simple global physical parameters. This may be
relevant for the optimal creation of entanglement in spin
systems, as well as contributing to a better understanding
of how correlations are created in dynamical processes,
something that can be tested experimentally in present
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setups. We will show that, even with this severely limited
control, the correlation speed can be engineered while
simultaneously keeping dispersion to a minimum, so that
correlations can be concentrated between particular spins.
Indeed, by manipulating system parameters during the
evolution, the speed can be adjusted at will, even to the
extent of reducing it to zero, allowing correlations to be
frozen at a desired location.

It is instructive to first consider the correlation propaga-
tion described in the references given above from a new
perspective. In many of those works, correlation propaga-
tion can be understood as follows. The spin system is
initially prepared in its ground state. A localized, low-
energy excitation is then created (e.g., by flipping one
spin) and allowed to evolve. Since the low-energy excita-
tions take the form of spin waves, the correlation and
entanglement dynamics can be understood as nothing other
than propagation of spin waves. The evolution of spin
waves is determined by the form of the system’s relation,
which will typically depend on external physical parame-
ters of the system (e.g., the strength of an external magnetic
field). Thus already in these setups, we can manipulate the
external parameters to control the dispersion relation,
hence control the propagation of correlations. For example,
changing the gradient of the dispersion relation will change
the propagation speed.

However, the ground state will typically be highly corre-
lated and difficult to prepare, and with the control required
to create a local excitation and break the translational sym-
metry, more sophisticated quantum-repeater setups are pos-
sible. Also, it is not clear that the correlations will remain
localized; they are likely to disperse rapidly as they propa-
gate. Therefore, we will extend this to systems prepared in
translationally invariant, easily created initial states. For
example, the fully polarized state with all spins aligned can
be prepared by applying a large external magnetic field. As
the initial state will be far from the ground state, containing
many excitations, the correlation dynamics is the result of
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the propagation and interference of a large number of spin
waves at many different wave numbers. Nonetheless, we
will show that, at least for some simple models, the system
can be engineered so that correlations propagate in well-
defined localized wave packets with little dispersion. The
external parameters can then be used to control the propa-
gation of these correlation packets.

In the following, we will consider a specific model
which, despite its simplicity, is sufficiently rich to display
most of the features we are interested in, and is simple
enough to envisage implementing it experimentally, for
instance, using atoms in optical lattices or trapped ions.
The XY model for a chain of spin—% particles is described
by the Hamiltonian Hyy = — 13 [(1 + y)ofo + (1 —
y)o) o)., +2Ao%], where the o’s are the usual Pauli
operators and the sum is over spin indices. The parameter
A can be interpreted as the strength of a global, external
magnetic field, whereas y controls the anisotropy of the
interactions. This Hamiltonian can be brought into diago-
nal form by the well-known procedure [4] of applying
Jordan-Wigner, Fourier, and Bogoliubov transformations,
giving Hyy = — 3 e(yiyl — vivy) with spectrum
g, = [(cosQak/N) — A + y2sin?[27k/N)]'/2. The
y;" are Majorana operators, related to the more usual
Jordan-Wigner fermionic annihilation operator vy, by yi{ =
y}: + ¥ and ¥y = ()/,Jcr — ¥1)/i, and they obey canonical
anticommutation relations {y{, Y%} = 28;,8,-

Ultimately, we are interested in ‘“‘connected” spin-spin
correlation functions, for example, the ZZ correlation
function C.(n, m) = (o%0%,) — (050%,), in which the
“classical” part of the correlation is subtracted. These
are related to the localizable entanglement L(n, m) (the
maximum average entanglement between sites n and m
extractable by local measurements on all the others: the
natural figure of merit for quantum repeaters. In particular,
for spin—% systems, L(n, m) = C(n, m) for any connected
correlation function C(n, m) [5]. However, we will start by
considering the simpler string correlation functions such as
Sxx(i, j) = (oF([i<k<;jo7)o}) [6]). Their behavior will
give insight into the more important spin-spin correlations.

Assume the spin chain is initially in some completely
separable, uncorrelated state, such as the state with all
spins down. The interactions are then switched on and, as
this initial state is not an eigenstate of the Hamiltonian
(unless A — 00), the state evolves in time. The initial state
is also the vacuum of the Majorana operators x;(p;) =
[1;05 af(y) obtained after applying just the Jordan-Wigner
transformation, and it is completely determined by its two-
point correlation functions. In other words, the vacuum is a
fermionic Gaussian state and can be represented by its
covariance matrix I',,, =1([r,, r,]), where ry_; = x,
and r 21 = DPi-

From the Heisenberg evolution equations, it is simple to
show that any evolution governed by a quadratic
Hamiltonian corresponds to an orthogonal transforma-

tion of the covariance matrix. It is also clear that, as the
Fourier and Bogoliubov transformations are canonical
(anticommutation-relation-preserving) transformations of
the Majorana operators, they similarly leave Gaussian
states Gaussian, and they too can be expressed as orthogo-
nal transformations. Thus the time-evolved state of the
system is given by a series of orthogonal transformations
of the fermionic vacuum:

I'(r) = OT',, .07, 0 = 0L05,,0(0. ()
Because of translational invariance, this is a block-Toeplitz
matrix, composed of 2 X 2 blocks G, at distance x from the
main diagonal. In the thermodynamic limit N — oo with
2%"—» ¢ and g, — &(p) = &,

G, = fﬁ de g0 & A go = iSsin(¢x) sin(2et)
-7 g8-1 8o

g+ 1=2C,S, sin(¢x)sin*(et)
+ cos(px)[C? + S? cos(2¢t)],

where  C, = [cos(¢) — Al/e(¢), S, = ysin(¢)/&(d),
and x =m — n. We can now calculate certain string
correlations, which are given directly by elements of the
covariance matrix. For example, (05 ([T,<i<m0)om) =
%FZn*l,mel = Zs:ils f’_’rrdq{)S COS(¢X + 2S8t)/2

Although the evolution of the string correlations is pro-
duced by the collective dynamics of a large number of
excitations, this expression has a simple physical interpre-
tation: it is the equation for two wave packets with enve-
lope S/2 propagating in opposite directions along the
chain, according to a dispersion relation given by the
system’s spectrum &(¢p). This wave-packet interpretation
allows us to make quantitative predictions as to how the
dynamics will be affected if the system parameters y and A
are modified. Specifically, modifying the parameters will
change the dispersion relation, changing the group velocity
of the correlation packets, as well as the rate at which they
disperse. (The wave-packet envelopes also depend on the
system parameters, so the relevant region of the dispersion
relation may also change.) Thus by varying only global
physical parameters, we can control the speed at which
correlations propagate.

Does this hold true for the more interesting spin-spin
correlations? We will show analytically that they have a
similar wave-packet description, although in terms of mul-
tiple packets propagating simultaneously. This will allow
us to predict the behavior of the spin-spin correlation
dynamics for different values of the system parameters.
In particular, we will show that the correlations can be
made to propagate in well-defined packets whose speed
can be engineered by tuning the system parameters.
Moreover, the propagation speed can be controlled as the
system is evolving, so we can speed up or slow down the
packets, even to the extent of reducing the speed to zero.
We confirm our predictions by numerically evaluating the
analytic expressions.
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Let us now calculate the spin-spin connected correlation function using the covariance matrix derived above. We have
0% = x,p,, so the ZZ connected correlation function is given by C..(x) = (x, P, XPpXm) — (X, X)X Py Pm)> Where we have
used Wick’s theorem to expand the expectation value of the product of four Majorana operators into a sum of expectation
values of pairs [7,8]. The latter are given by covariance matrix elements, resulting in the following analytic expression

for C.:
) C..(x, 0* = ([:T dq’)gs:zi:][s cos(px — 2sst)]>2 + ([7:7 d¢CS[sin(¢px) — %in] sin(¢px + 2sst)]>2
_ (fj; d¢[C2 cos(px) + S?zsgl cos(px + ZSst):|>2. (2)

Although more complicated than the string correlations,
this expression also describes wave packets evolving ac-
cording to the same dispersion relation £(¢), albeit mul-
tiple packets with different envelopes propagating and
interfering simultaneously (three in each direction). In
many parameter regimes, broad (in frequency-space)
wave packets and a highly nonlinear dispersion relation
will cause the correlations to rapidly disperse and disap-
pear. However, we can find regimes in which the wave
packets are located in nearly linear regions of the disper-
sion relation and maintain their shape as they propagate.
For example, at y = 1.1 and A = 2.0, all three wave
packets of Eq. (2) are nearly identical and reside in an
almost-linear region of the dispersion relation with gra-
dient 2.1, as in Fig. 1 (inset). The spin-spin correlation
dynamics will therefore involve well-defined correlation
packets propagating at a speed dx/dt = 2.1, dispersing
only slowly as they propagate. Figure 1 shows the result
of numerically evaluating Eq. (2), which clearly confirms
the predictions. Note that the magnitude of the correlation
function in Fig. 1 is quite small. How tight is this as a lower
bound on the localizable entanglement? Numerical simu-
lation using matrix product states coupled with
Monte Carlo evaluation of the average over measurements
shows that, although the qualitative behavior of the entan-
glement follows that of the correlations, the localizable
concurrence is an order of magnitude larger than this lower

bound.
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FIG. 1 (color online). For y = 1.1, A = 2.0, all the wave-
packet envelopes (28, 2CS, and 252 from Eq. (2), solid curves,
inset) are similar in form, peaked around a nearly linear region of
the dispersion relation &(¢) (dashed curve, inset) with gradient
2.1. Thus the correlations C.,(x, ¢) (main plot) propagate in well-
defined packets at a speed given by the gradient.

\
We can engineer a different correlation speed by chang-

ing the parameters. E.g., for y = 10.0 and A = 0.9 we
predict from the dispersion relation a higher propagation
speed dx/dt = 18, although at the expense of increased
dispersion. Figure 2 shows precisely this behavior.

An even more interesting possibility is controlling the
correlation packets as they propagate. If the system pa-
rameters are changed continuously in time, the XY Hamil-
tonian becomes time dependent, and the orthogonal evo-
lution operator O(¢) in Eq. (1) is given by a time-ordered

exponential ~ O(r) = T[eJo ] = lim,_, [ eatn,
(A is a time-dependent, antisymmetric matrix determined
by the Hamiltonian.) In general, the time ordering is es-
sential. But if the system parameters change slowly in time
(i.e., the adiabatic condition is fulfilled), dropping it will
give a good approximation to the evolution operator. The
state at time ¢ is then just given by evolution under the time
average (up to ) of the Hamiltonian. If we remain in a
parameter regime for which the relevant region of the
dispersion relation is nearly linear, adjusting the parame-
ters changes the gradient without significantly affecting its
curvature or the form of the wave packets. Thus, to good
approximation, slowly adjusting the parameters should
control the speed of the wave packets as they propagate,
allowing us to speed them up and slow them down.
Numerically evaluating the time-ordered exponential
shows this is indeed possible (Fig. 3).

FIG. 2 (color online). For y = 10.0, A = 0.9, the wave-packet
envelopes (solid curves, inset; cf. Fig. 1) are spread over the
entire frequency range. The maximum propagation speed of the
correlations C_ (x,¢) (main plot) is given by the maximum
gradient 19.8 of the dispersion relation ¢ (dashed curve, inset),
faster than in Fig. 1 but with higher dispersion.
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FIG. 3 (color online). Starting from y = 1.1, A = 2.0 as in
Fig. 1, y and A are smoothly changed to move from the dashed to
the dotted dispersion relation (inset), increasing the correlation
speed.

Clearly it would be useful to be able to stop the corre-
lations once they reach a desired location. One way would
be to simply switch off the interactions. But strictly speak-
ing, this would require more control than is provided by the
two parameters defined in the Hamiltonian (there is no
value of y for which all interaction terms vanish), and
may be difficult in physical implementations. If the spin
model were realized in a solid-state system, for example,
switching off the interactions would likely involve fabri-
cating an entirely new system. In any case, we will show
that switching off the interactions is not necessary in order
to freeze correlations at a specific location.

Instead of changing the parameters continuously, we
now consider changing them abruptly. The time-evolved
covariance matrix in this scenario can be calculated ana-
lytically by the same methods as used above. Suppose the
initial system parameters 7y, and A are suddenly changed
to y; and A; at time #;. The spin-spin correlations will
initially evolve according to Eq. (2), as before. After time
t, the evolution becomes more complicated. The analogue
of Eq. (2) separates into a sum of terms, C, (x, 1> t;) =
C.(x eit,t)) + C.(x, —eit, 1)) + C(x, e11) + C(x, 1),
describing wave packets evolving in four different ways:
those that initially evolve according to &, and subsequently
(for t > t;) evolve according to &; (denoted C_.(x, €1, ),
since they depend on these three variables), those that
subsequently evolve according to —&; (C_.(x, —&1, 11)),
those that only start evolving at 7; (C,.(x, £7)), and those
that undergo no further evolution after ¢, (C_,(x, t1)), all of
which can be seen in Fig. 4. For t > ¢, the “frozen” terms
are

1 (= 2

Ci(x, z1)2=[E f dSs,Se, K > sin(¢x+2st180)}
-7 s=*1

1 (7 2

—[— f deS,,Cs, Z cos(¢x+2stleo)} ,

2)- s==*1

where K = C, S, — C, S,,. We can make use of these
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FIG. 4 (color online). The system is initially allowed to evolve
with vy = 0.9 Aq = 0.5, then “quenched” at time #; = 20.0 to
vi = 0.1, A; =10.0. Some of the correlations C..(x,?) are
frozen at the separation (x = 20) they reached at ¢;. Others
propagate according to the new dispersion relation, or are
“reflected”.

terms to move correlations to the desired location, then
“quench” the system by abruptly changing the parameters,
freezing this part of the correlations at that location and
leaving the rest to propagate away, as in Fig. 4.

We have shown that controlling correlation propagation
in spin systems can often be understood in terms of con-
trolling the spin-wave dispersion relation. We have applied
this to a specific example system, showing that by this
method even crude global control over the physical pa-
rameters of a system can be sufficient to afford precise
local control over correlation propagation.
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