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We show that knots of spin textures can be created in the polar phase of a spin-1 Bose-Einstein
condensate, and discuss experimental schemes for their generation and probe, together with their lifetime.
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A decade ago, Faddeev and Niemi suggested that knots
might exist as stable solitons in a three-dimensional clas-
sical field theory, opening up a way to investigate physical
properties of knotlike structures [1]. They further proposed
[2] that their model can be interpreted as the low-energy
limit of the Yang-Mills theory, where knots are suggested
as a natural candidate for describing glueballs—massive
particles made of gluons.

In cosmology, topological defects are considered to be
important for understanding the large-scale structure of our
Universe [3]. Although recent measurements of the cosmic
microwave background (CMB) have shown that topologi-
cal defects are not the dominant source of CMB anisotro-
pies, the search for topological objects in the Universe,
such as cosmic strings, continues to be actively conducted.
Recently, it has been suggested that a cosmic texture,
classified by the homotopy group of �3�S3� � Z [3], gen-
erates cold and hot spots of CMB [4]. This texture is a
spherical or pointlike object that is unstable against shrink-
age according to the scaling argument. In cosmology,
the instability is favored for evading cosmological prob-
lems such as a monopole problem. Three-dimensional
Skyrmions [5] and Shankar monopoles [6,7] are topologi-
cal objects belonging to the same homotopy group. On the
other hand, knots, which belong to a distinct homotopy
group, �3�S2� � Z, have thus far been ignored by cosmol-
ogists; however, they would be a potential candidate for
topological solitons in our Universe.

Knots are unique topological objects characterized by a
linking number or a Hopf invariant as discussed in a
seminal paper on superfluid 3He [7]. Other familiar topo-
logical objects, such as vortices [8–11], monopoles [9,12],
and Skyrmions [5–7], are characterized by winding num-
bers, which have recently been discussed in relation to
spinor Bose-Einstein condensates (BECs) [13–19].
Structures of knot solitons have been investigated in
Ref. [20], and the existence of a stable knot soliton has
also been discussed in the context of a charged two-
component BEC [21] and triplet superconductors [22].
However, little is known about how to create such knots
experimentally. In this Letter, we point out that spinor
BECs offer an ideal testing ground for investigating the
dynamic creation and destruction of knots. We also show

that knots can be imprinted in an atomic BEC using
conventional magnetic field configurations.

We consider a BEC of spin-1 atoms with massM that are
trapped in an optical potential V�x�. The energy functional
for a BEC at zero magnetic field is given by
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where  m�x� is an order parameter of the BEC in a mag-
netic sublevel m � 1, 0 or �1 at position x, and ��x� �P
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the number density and spin density, respectively. Here
F � �Fx; Fy; Fz� is a vector of spin-1 matrices. The
strength of the interaction is given by g0 � 4�@2�2a2 �
a0�=�3M� and g1 � 4�@2�a2 � a0�=�3M�, where aS is the
s-wave scattering length for two colliding atoms with total
spin S. The ground state is polar for g1 > 0 and ferromag-
netic for g1 < 0 [23,24].

The order parameter for the polar phase can be described
by the superfluid phase # and unit vector field n in spin
space, whose components are related to  m as
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This order parameter is invariant under an arbitrary rota-
tion about n � �nx; ny; nz�, i.e., exp��in 	 F�
� � �,
where � is an arbitrary real number. It is also invariant
under simultaneous transformations # ! # � � and n!
�n. The order parameter manifold for the polar phase is
therefore given by M � �U�1� � S2�=Z2 [14], where U�1�
denotes the manifold of the superfluid phase #, and S2 is a
two-dimensional sphere whose point specifies the direction
of n.

Knots are characterized by mappings from a three-
dimensional sphere S3 to a two-dimensional one S2. The
S3 domain is prepared by imposing a boundary condition
that � takes on the same value everywhere at spatial
infinity, so that the medium is compactified into S3.
Since neither U�1� nor Z2 symmetry contributes to homo-
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topy groups in spaces higher than one dimension, we have
�3�M� � �3�S

2� � Z. The associated integer topological
charge Q is known as the Hopf charge which is given by

 Q �
1

4�2

Z
d3x�ijkF ijAk; (3)

where F ij � @iAj � @jAi � n 	 �@in� @jn� [1]. Note
that the domain (x) is three-dimensional, while the target
space (n) is two-dimensional. Consequently, the preimage
of a point on the target S2 constitutes a closed loop in S3,
and the Hopf charge is interpreted as the linking number of
these loops: If the n field has Hopf charge Q, two loops
corresponding to the preimages of any two distinct points
on the target S2 will be linked Q times.

Figure 1(a) illustrates the n field of a knot created in a
uniform BEC with the linking number of 1. Here, the n
field is expressed as n�x� � exp��i��r�v̂��;�� 	 ~F
n1,
subject to the boundary condition n1 � �0; 0; 1�T at spatial
infinity, where x � �r sin� cos�; r sin� sin�; r cos�� and ~F
is a vector of spin-1 matrices in the Cartesian representa-
tion, i.e., ~Fj � �i�jkl �j; k; l � x; y; z�. A given mapping
v̂��;��:S2 ! S2 determines the charge Q, and we choose
v̂ � �� sin� cos�;� sin� sin�; cos�� in Fig. 1(a). The ra-
dial profile function ��r� is a monotonically decreasing
function of r, subject to the boundary conditions ��0� �
2� and ��1� � 0. Here, we take ��r� � 2��1�
tanh�r=�knot�
, where �knot is a characteristic size of the
knot. Although there is no singularity in the texture, it is
impossible to wind it off to a uniform configuration in a
continuous manner because this texture has a nonzero Hopf
charge of 1. The left part of Fig. 1(b) describes the order
parameter for the m � �1 component in real space, where
we plot the isopycnic surface of the density and the color
on the surface represents the phase. Here, n on the torus is
almost perpendicular to n1 and the phase of  �1 is given
by arg� �1� � arctan�ny=nx�. The core of the knot (n �
�n1) is depicted as a white tube in Fig. 1(b). On the right
side of the figure, we show the extracted preimage for n �
�0; 0;�1�T (white tube) and that for n � �1; 0; 0�T (black
tube).

The torus shape of the m � �1 component appears as a
double-ring pattern in the cross-sectional plane at z � 0, as
shown in Fig. 1(c), where the density distributions of the
m � 1 (left) and m � 0 (right) components are shown in
the gray scale. The distributions of m � 1 components
overlap completely; therefore the system remains unmag-
netized. This double-ring pattern can serve as an experi-
mental signature of a knot and it should be probed by
performing the Stern-Gerlach experiment on the BEC
that is sliced at z � 0.

Next, we show that knots can be created by manipulating
an external magnetic field. In the presence of an external
magnetic field, the time-dependent phase differences be-
tween different spin components are induced because of
the linear Zeeman effect, which causes the Larmor pre-

cession of n, while n tends to become parallel to the
magnetic field because of the quadratic Zeeman effect.
Suppose that we prepare a BEC in the m � 0 state, i.e.,
n � �0; 0; 1�T , by applying a uniform magnetic field B0 in
the z direction. Then, we suddenly turn off B0 and
switch on a magnetic field given by B�x� � b�r��
�sin� cos����0�; sin� sin����0�; cos��T , where b�r�
is an arbitrary function and �0 is a real parameter. This
magnetic field configuration is quadrupolar if �0 � � and

FIG. 1 (color). (a) Three-dimensional configuration of the n
field of a knot with Hopf charge Q � 1, expressed as n �
e�i��r�v̂	 ~F�0; 0; 1�T , where ��r� � 2��1� tanh�r=�knot�
 and
v̂ � �� sin� cos�;� sin� sin�; cos��. Note that n �

�nx; ny; nz�
T is related to the order parameter � through

Eq. (2). In the figure, only n on the x, y, and z axes is shown
as arrows. The dashed line traces the point n � �0; 0;�1�T ,
which is a circle on the xy plane with the radius
�tanh�1�1=2�
�knot ’ 0:55�knot. The color on the arrows repre-
sents the value of nz (see the scale). (b) The torus shape on the
left side of the figure shows the isopycnic surface of j �1j

2 �
0:47, which is equivalent to the region where jnzj � 0:24. The
color on the surface shows the phase of  �1, that is equivalent to
arctan�ny=nx�. The white and black tubes are the preimages of
n ’ �0; 0;�1�T�nz <�0:95� and n ’ �1; 0; 0�T�nx > 0:95�, re-
spectively, which are reproduced on the right side of the figure.
The two tubes cross once (linking number 1), which is consistent
with Q � 1. (c) Cross sections of the density of the m � 1
(left) and m � 0 (right) components in the xy plane. The size of
each panel is 4�knot � 4�knot. The torus shape of the m � 1
components appears as double rings in the cross section, which
can serve as the signature of a knot.
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monopolar if �0 � 0. In what follows, we shall consider
the case of �0 � � and b�r� � b0r, unless otherwise
specified. Because of the linear Zeeman effect, n starts
rotating around the local magnetic field as n �

exp��i�	B=2�B�x� 	 ~Ft=@
�0; 0; 1�T , and, therefore, the n
field winds as a function of t.

Figure 2 shows the dynamics of the creation and de-
struction of knots in a spherical trap subject to the quad-
rupole field. Figures 2(a)–2(d) show the snapshots of  �1

(left) and preimages of n � �0; 0;�1�T and n � �1; 0; 0�T

(right) at (a) t � 0:5TL, (b) 1:1TL, (c) 2:2TL, and (d) 3:3TL,
where TL � 2h=�	Bb0RTF� is the period of the Larmor
precession at the Thomas-Fermi radius RTF. The solid
circle indicates the periphery of the BEC on the xy plane.
Knot-like objects enter the BEC from its periphery
[Fig. 2(a)], and the number of knots increases as the n
field winds more and more with time [Fig. 2(b) and 2(c)].
With the passage of further time, however, the knot struc-
ture is destroyed, as shown in Fig. 2(d). The knots therefore
have a finite lifetime, which will be discussed later.
Figures 2(e)–2(h) show cross sections of the density for
m � �1 (top) and m � 0 (bottom) components on the xy
plane at (e) t � 0:5TL, (f) 1:1TL, (g) 2:2TL, and (h) 3:3TL.
We find that as the n field winds in time, the number of
rings increases. This prediction can be tested by the Stern-
Gerlach experiment. For b0 � 1 G=cm and RTF � 30 	m,
we have TL � 0:5 ms. Note that the axisymmetry of the
system, which we assume in this Letter, is not essential for
the creation of knots.

The knot soliton in the simple nonlinear 
 model with-
out a higher derivative term is known to be energetically
unstable, since the energy of the knot is proportional to its
size �knot, as can be seen by integrating the kinetic energy
���2

knot over the volume of the soliton ��3
knot. Knots will

therefore shrink and finally disappear. In the case of an
atomic gas BEC, however, the total energy of the system
has to be conserved; therefore, the above-mentioned ener-
getics argument does not imply the instability of knots in
the present case.

The dominant decay mechanism for the knot in the
spinor BEC is the spin current due to a spatial dependence
of the n field. The spin current induces local magnetization
according to
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thereby destroying the polar state. The initial polar state
will spontaneously develop into a biaxial nematic state,
and eventually result in a fully polarized ferromagnetic
domain. While n is well defined in a biaxial nematic state
as being parallel to one of the symmetry axes, it is ill
defined in the fully magnetized region.

Substituting n � e�i��r�v̂	 ~F�0; 0; 1�T , which is used in
Fig. 1, into Eq. (4), we can analytically calculate the time
derivative of the local magnetization, whose maximum
value is given by j @@t f�x; t � 0�jmax ’ 14:3@=�M�2

knot�. As
the magnetization initially increases linearly as a function
of time (see Fig. 3), we define the lifetime of a knot as
knot � �14:3@=�M�2

knot�

�1. We also numerically calculate

FIG. 2 (color). Dynamics of the creation and destruction of
knots in a spherical trap under a quadrupolar magnetic field. (a)–
(d) The left sides of the figure show the isopycnic surface of
j �1j

2=� � 0:4, and the color on the surface shows the phase of
 �1 at (a) t � 0:5TL, (b) 1:1TL, (b) 2:2TL, and (d) 3:3TL, where
TL � 2h=�	Bb

0RTF�. The white and black tubes on the right
are the preimages of n ’ �0; 0;�1�T�nz <�0:95� and n ’
�1; 0; 0�T�nx > 0:95�, respectively, and the solid circles represent
the periphery of the BEC [�=��x � 0� � 0:01] in the xy plane.
(e)–(h) Cross sections of the density normalized by ��x � 0� for
m � �1 (top) and m � 0 (bottom) components in the xy plane
at (e) t � 0:5TL, (f) 1:1TL, (g) 2:2TL, and (h) 3:3TL.
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the dynamics of the knot shown in Fig. 1 by solving the
time-dependent Gross-Pitaevskii equation; the result is
shown in Fig. 3. In Fig. 3, we plot the maximum polariza-
tion as a function of time. The dashed line represents
jf�x�jmax � t=knot, which agrees well with the numerical
result for t� knot. The insets of Fig. 3 show the distribu-
tion of jf�x�j on the xz plane. The ferromagnetic domain
emerges because of the spin current caused by the spatial
dependence of n, and then it expands outward. In the case
of a 23Na BEC, the lifetime for a knot with �knot � 20 	m
is knot � 10 ms. The lifetime increases with increasing
the size of knots.

Finally, we point out that knots in a BEC may be used as
an experimental signature of a magnetic monopole. A
magnetic monopole induces the magnetic field B �
@=�2er2�r̂, which acts in a manner similar to the quadru-
pole field and creates knots. Although b�r� in this case
diverges at r � 0, it forms a knotlike structure on a large
scale. For instance, knots expand up to 10 	m in the period
43 	s of Larmor precession at r � 10 	m, where B �
33 mG.

In conclusion, we have shown that a spin-1 polar Bose-
Einstein condensate can accommodate a knot, which is
also be shown to be created using a quadrupolar magnetic
field. Contrary to knot solitons known in other systems, the
knots in spinor BECs are immune from energetic instabil-
ity against shrinkage, because the energy of the system is
conserved; however they are vulnerable to destruction
caused by spin currents because of the n texture. The
lifetime of a knot increases in proportion to the square of

the size of knots and is shown to be sufficiently long to be
observed in a Stern-Gerlach experiment.
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FIG. 3. Time evolution of the maximum of the local polariza-
tion in a spherical trap with RTF � 4:3�knot, starting from the
knot shown in Fig. 1. The time is measured in units of M�2

knot=@.
The dashed line shows jf�x�jmax � t=knot (see text), which
agrees well with the numerical result. The insets show jf�x�j
in the xz plane, and the number below each panel shows the time
elapsed in units ofM�2

knot=@. The size of each panel is 1:9�knot �
3:8�knot.
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