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Wave functions of low-energy quasiparticle subgap states in d-wave superconducting rings, threaded by
an Aharonov-Bohm magnetic flux, are found analytically. The respective energies are closest to the
midgap position at small magnetic fluxes and deviate from the Fermi surface due to the Doppler shift,
produced by the supercurrent. The Doppler-shifted zero-energy states result in a paramagnetic response of
the ring at small fluxes. The states exist only for even angular momenta of the center of mass of Cooper
pairs, in agreement with recent numerical studies of the problem. This macroscopic quantum effect in
d-wave rings results in broken h=2e periodicity, retaining only the h=e periodic behavior of the
supercurrent with varying magnetic flux.

DOI: 10.1103/PhysRevLett.100.177003 PACS numbers: 74.20.Rp, 74.25.Ha, 74.78.Na

The h=2e periodic dependence of the current on the
magnetic flux in superconducting rings and hollow cylin-
ders is considered frequently as an inevitable consequence
of the electronic pairing in superconductors. This point of
view is fully supported by the Ginzburg-Landau theory,
which contains only the Cooper pair charge 2e and always
predicts the magnetic flux period h=2e. Numerous experi-
mental results seem to be also in favor of such conclusions,
including first observations of the h=2e flux quantization in
hollow cylinders [1,2], the Little-Parks effect [3], and the
flux quantization of Abrikosov vortices [4,5]. However, the
Ginzburg-Landau approach applies on the scale much
greater than the Cooper pair size and, strictly speaking,
at temperatures near Tc. It is, in general, not applicable to
mesoscopic rings at low temperatures, where a micro-
scopic approach, which is not so plain with respect to the
problem [6–8], has to be explored.

According to the microscopic BCS theory, normal-metal
electrons with projections @M and @ �M of their orbital
angular momenta along the ring axis, form in s-wave
superconductors Cooper pairs with the angular momentum
@q � @�M� �M� of their center of mass [6,9]. Respec-
tively, a Bogoliubov quasiparticle in the superconducting
ring represents a superposition of an electron with the
angular momentum @M and a hole with �@ �M, and the
difference is @q. Since M and �M have to be integers and
can be represented under the conditions in question asM �
�‘� q�=2 and �M � ��‘� q�=2, the quantities ‘ and q can
take simultaneously either even or odd integral values
[6,9]. The key point is that the single valuedness of the
wave functions is protected by the quantities �‘� q�=2,
whereas only q=2 enters the expression for the supercur-
rent via a standard combination q=2��=�0 with the
magnetic flux. As a result, the factor q� 2�=�0 arises
in the microscopic BCS theory and leads to the magnetic
flux quantum �0=2 in superconductors, a half of the
normal-state flux quantum �0 � h=e [10–12].

The condition of the single valuedness of the wave
function, which justifies the presence of the superconduct-

ing flux quantum �0=2, does not necessarily result itself in
the h=2e periodicity, however. An important additional
condition, which has to be satisfied for ensuring the peri-
odicity, is the degeneracy of the respective states. In gen-
eral, the degeneracy takes place between states of a
superconducting ring pierced by magnetic fluxes, which
differ by an integral number of �0, i.e., by an even number
of the superconducting magnetic flux quanta �0=2 �
h=2e. A difference by odd numbers of the quanta is, in
principle, physically distinguished [6,7]. This circum-
stance represents a significant interest since it could lead
to a h=e-periodic component in behaviors of superconduct-
ing rings, which removes the specific superconducting
h=2e periodicity or, at least, makes it approximate.

On the other hand, there are microscopic arguments,
which substantially restrict possible deviations from the
h=2e periodicity and explain from the microscopic point of
view its numerous experimental observations in supercon-
ducting rings. The arguments give also a general idea for
further search for the conditions, when the breaking of the
periodicity is noticeable. As this follows from the BCS
theory, the breaking could become observable, if, in carry-
ing out the statistical averaging, one cannot always replace
the sum over states near the Fermi surface by the respective
integral. For this reason the discreteness of the angular
momentum is of crucial importance for making it possible
to distinguish between the states of a ring, which differ by
odd superconducting flux quanta. For s-wave pairing, this
can happen in mesoscopic rings with characteristic sizes of
the order of the coherence length �0 or less [7]. Among
various possible complications of the standard BCS ap-
proach which arise in rings of such a small size, probably,
the main one is that the discreteness of the states and the
pair breaking effect of the supercurrent can destroy the
superconductivity there, at least, within some range of the
magnetic flux [13]. This complicates an experimental ob-
servation of the magnetic flux periodicity in a supercon-
ducting state of the mesoscopic s-wave rings. The
fluctuations of the type of quantum phase slips, as well
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as effects of the Coulomb blockade, could also play an
important role there.

The problem has been investigated recently in Ref. [8]
for d-wave rings at low temperatures, where a noticeable
violation of the h=2e periodicity, associated with discrete
current-carrying low-energy states, was identified. One of
the most striking results of Ref. [8], obtained within nu-
merical self-consistent calculations, is that in d-wave
superconducting rings quasiparticle subgap states with
quite low energies exist only for even q. By contrast, a
considerable empty spectral gap appears in d-wave rings
with odd q. In the presence of low-energy states, a com-
paratively small variation of the Doppler shift with the
magnetic flux turns out to be sufficient for generating an
alternation of the diamagnetic and paramagnetic states in
the ground state of the d-wave ring. As a result, the break-
ing of the h=2e periodic dependence of the supercurrent on
the magnetic flux has been found to be observable in
d-wave rings, whose size can significantly exceed the
coherence length �0.

In the present paper an analytical approach will be
developed for studying the effect, based on a compara-
tively simple model of the d-wave superconducting ring.
Energies and wave functions of quasiparticle current-
carrying states, lying closest to the Fermi level at small
magnetic fluxes through the rings, will be obtained by
solving the respective quasiclassical equations. The states
turn out to deviate from the zero energy (the midgap
position) only due to the Doppler shift, produced by the
supercurrent. They form a paramagnetic current, which
dominates the response of the ring at low fluxes. Since
the anisotropic d-wave pairing breaks the conservation of
the angular momentum along the ring axis, the angular
dependence of the respective quasiparticle wave functions
does not reduce to a simple exponential dependence
exp�i�‘� q�’=2�, which they would possess in isotropic
s-wave or normal-metal rings. The probability density of
the states has its maxima at the nodes of the order
parameter.

The phase factors of the quasiparticle wave functions are
also modified in d-wave rings. This results in a topological
reason for the low-energy quasiparticle states to survive
only for even q. It will be shown that the quantity ‘=2 in the
phase factor is replaced by the value MF of the angular
momentum along the ring axis of the normal-state
quasiparticles at the Fermi energy, for a given transverse
channel. Since 2MF is always even, the exponential
exp�i�2MF � q�’=2� is compatible with the single valued-
ness of the superconductor wave function only for even q
and, hence, for even ‘. Therefore, the Doppler-shifted
zero-energy states exist only in even q sectors of the
pairing. This signifies that the violation of the h=2e peri-
odicity in the subgap spectrum of d-wave superconducting
rings is a macroscopic quantum effect associated with the
discreteness of the states and the specific structure of their
wave functions. The discreteness is of the universal char-
acter and should be observable at sufficiently low tempera-

tures, when pairings with different q in superconducting
rings can be distinguished.

Subgap states.—Consider a narrow strongly type II
superconducting ring with a negligible supercurrent-
induced magnetic flux, where the arm width L is much
less than the penetration depth L	 �L and considerably
exceeds the coherence length. The nonlocal operator for an
anisotropic order parameter in the ring can be described
quasiclassically and reduced, in the main approximation, to
a local angular dependent quantity.

The dependence of the Bogoliubov amplitudes on the
polar angle in continuous circular (cylindrical) rings can be
taken in the form

 

u�’� � ~u�’� exp�i2�‘� q�’�;

v�’� � ~v�’� exp�i2�‘� q�’�;

��’� � ~��’� exp�iq’�;

(1)

Quantities ~u and ~v do not depend on the polar angle ’ in
isotropic normal metals and s-wave superconductors.
Since in d-wave rings the angular dependence of ampli-
tudes ~u�’� and ~v�’� is induced entirely by an anisotropy of
the superconducting order parameter ~��’� and disappears
in the normal-metal state, the amplitudes vary compara-
tively slowly with changing ’. Taking this into account,
the following equations of the Andreev type for ~u�’� and
~v�’� can be derived:

 

i
@vF;’
R

d~u
d’
� �"� ��mvF;’vs�~u� ~��’�~v � 0;

i
@vF;’
R

d~v
d’
� �"� ��mvF;’vs�~v� ~�
�’�~u � 0:

(2)

Here vs is the supercurrent velocity, which takes the
form 2mRvs � @minq�q� 2�=�0�; � is the external
Aharonov-Bohm magnetic flux and the associated
vector potential is A’ � �=2�R. The normal-state quasi-
particle excitation energy � is taken with respect to the
Fermi level. For a given transverse channel, � is a discrete
quantity, which depends on ‘=2 in Eqs. (2), and the effec-
tive Fermi velocity of a circular motion is defined as
vF;’ � @�=@p’jpF , p’ � @‘=2R.

As the radius of the ring is much greater than the atomic
scale kFR� 1, the quasiclassical approach applies to a
circular quasiparticle motion and, in particular, admits the
condition jvF;’j � jvsj, i.e., j‘j � jq� 2�=�0j. For the
maximum value of the superfluid velocity jmvF;’vsj �
max�j��’�j�, one gets jvsj � �kF�0�

�1jvF;’j 	 jvF;’j.
Hence, linear terms in vs, as well as all other terms in
Eqs. (2), can be considered within the quasiclassical de-
scription as small quantities of the first order as compared
with "F~u�’�.

In s-wave superconductors, the amplitudes ~u, ~v do not
depend on ’ and the condition for nontrivial solutions of
Eqs. (2) results in the quasiparticle energies
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 " � mvF;’vs �
���������������������
�2 � j�j2

q
: (3)

The ground-state value of q is known to possess the h=2e
period, changing with flux as q � int�2�=�0 �
sgn���=2�, up to small finite-size corrections. Such a
dependence is assumed observable below, for example, if
the system is field cooled through Tc for each field value. In
general, states with different q describe different meta-
stable phases of the superconductor [9], which usually
possess large lifetimes, even if L	 �L and the magnetic
flux is not really trapped. If pair breaking effects of
the supercurrent are small, the energies (3) depend linearly
on q� 2�=�0 and manifest the same h=2e periodic
dependence.

In the absence of the supercurrent, energies (3) coincide
with those in homogeneous superconductors. The Doppler
shift, described by the first term in Eq. (3), causes some of
the states to move in the subgap region with varying
magnetic flux. As �q� �2����0��  1=2 for the ground-
state behavior of q, the energy (3) can cross the Fermi
surface at some flux value only in small rings, when 4R<
@vF;’=j�j and the pair breaking supercurrent strongly
modifies or even destroys the superconducting state in
the ring. In s-wave rings of larger size, energies of the
subgap states lie comparatively far from the midgap
position.

Andreev equations (2) can be transformed to Riccati
equation [14], which has periodic coefficients in a doubly
connected d-wave sample. Numerous solutions of Eqs. (2)
will not be discussed analytically here, as this is mostly the
problem for numerical studies. The self-consistent numeri-
cal solution of the respective Bogoliubov–de Gennes
equations for the tight-binding model of the d-wave square
loops is represented in Ref. [8]. There are, however, two
remarkably simple degenerate continuous solutions of
Eqs. (2) for an intrinsically real order parameter ~��’�,
which changes its sign and vanishes after averaging over
the polar angle. These solutions are of special interest and
can be described analytically for any particular angular
dependence ~��’�. For a simple model of the dx2�y2 -wave
order parameter, one can write in the main quasiclassical
approximation ~��’� � �d cos2’ after applying � to (1).
For spatially constant �d, the ‘‘electronlike’’ and the
‘‘holelike’’ solutions take the following form [in a more
general case one should make the substitution in Eqs. (4)
and (5), �d sin�2’�=2!

R ~��’�d’]:

 

~u�’�
~v�’�

� �
� C1 exp��i�’�

cosh
�

�dR
2@vF;’

sin2’
�

i sinh
�

�dR
2@vF;’

sin2’
�

0
BBB@

1
CCCA; (4)

 

~u�’�
~v�’�

� �
�C2 exp��i�’�

sinh
�

�dR
2@vF;’

sin2’
�

icosh
�

�dR
2@vF;’

sin2’
�

0
BBB@

1
CCCA; (5)

where � � R�=@vF;’, " � mvF;’vs, and constant ampli-
tudes C1;2 result from the normalization.

The energy " � �mjvF;’vsj deviates from the midgap
position due to the Doppler shift and its sign depends on
relative directions of the quasiparticle and the supercurrent
circulations. If the ring size noticeably exceeds �0, then
j"j 	 j�dj. The origin of the Doppler-shifted zero-energy
states is associated with the change of sign of the d-wave
order parameter. Figure 1 displays the probability density
of the states, which possesses the characteristic fourfold
structure and reaches its maximum exactly at the nodes
’ � � �

4 , � 3�
4 . As for superpositions of (4) and (5) the

fourfold symmetry reduces to two twofold structures, the
degeneracy of the states (4) and (5) could be lifted within
higher-order approximations.

The applicability of the quasiclassical approach to
the solutions (4) and (5) can be explicitly justified. The
terms containing the derivatives of the first order in
Eqs. (2), can be estimated as �@vF;’=R�d~u�’�=d’�
�0 ~u�’�, or ��~u�’�, and identified as small quantities of
the first order. At the same time, the terms which have been
neglected within the accuracy of Eqs. (2), contain an addi-
tional small factor �0="F or �="F as compared to the first-
order terms. This concerns, in particular, the terms with the
second-order derivatives, which can be, therefore, classi-
fied as small quantities of the second order. A variation of
the coefficient @vF;’=R in front of the first-order deriva-
tives in Eqs. (2), associated with the difference between v’
and the respective polar component of the Fermi velocity
vF;’, also results in small terms of the second order, which
are beyond the accuracy of the equations and have to be
neglected. This circumstance is important for further
considerations.
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FIG. 1 (color online). The probability density as a function on
the polar angle for the Doppler-shifted zero-energy state in the
d-wave ring with R � 10@vF;’=j�dj.
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Broken h=2e periodicity.—Wave functions of the orbital
motion have to be single valued, if only single-valued
gauge transformations are used and spin is not intimately
involved in the problem [15,16]. This is the case, in par-
ticular, for the Bogoliubov amplitudes (1), (4), and (5). The
exponentials in Eq. (1) are always single valued, since ‘
and q take even or odd values only simultaneously. Hence,
the amplitudes ~u�’� and ~v�’� have to be single valued
themselves and their phases have to acquire an integer
number of 2� after going around the loop. This signifies
that the solutions (4) and (5) really exist only if � is an
integer. For the last condition to be satisfied, the quantiza-
tion of the angular momentum along the ring axis turns out
to be of crucial importance. Indeed, close to the Fermi
surface j�‘=2� �MFj 	 jMFj and the quantized normal-
state excitation energy ��‘=2� takes the following form:
��‘=2��vF;’�p’�pF;’��

@vF;’
R �‘=2�MF�. Therefore,

��‘=2� � �‘=2�MF�. As MF is always an integer, � is
an integer-valued parameter for even ‘ and, hence, for even
q. In the case of odd ‘ and q the parameter � takes half-
integer values, however. For this reason the Bogoliubov
amplitudes (1), (4), and (5) are not single valued for odd q,
changing their sign after going around the loop. Hence, the
Doppler-shifted zero-energy states (4) and (5) exist in the
d-wave superconducting rings in even q sectors of the
pairing, whereas for odd q the states do not arise in the gap.

As a rule, � can be effectively excluded from a theoreti-
cal analysis of observable superconductor properties. For
example, the current and other observables are expressed
via quasiclassical Green functions, which are � integrated.
As this follows from the present Letter, the situation can
change substantially, if � takes discrete values due to the
angular momentum quantization.

Paramagnetic response.—The total current J induced by
the Aharonov-Bohm field A’��� � �=2�� in a cylindri-
cal ring is obtained from the relation ��E����S �
��1=c�

R
V j’����A’���dV � ��1=c�J��, where E

is the energy and S the entropy. Thus, in even q sectors
of the pairing, a contribution to the subgap current from
the two states with �‘=2 takes the form J �

��evF;’=2�R� tanh��@vF;’=4RT��q� 2�
�0
��. In taking the

derivative of the energy over the magnetic flux, abrupt
changes associated with the �q � �1 transitions have
been disregarded. Within the model, the characteristic
value of the current evF;’=2�R, carried by the low-energy
states, coincides with that for the normal-state persistent
current [17]. However, its sign is determined by the quan-
tity q� 2�

�0
, which is specific for the superconducting state.

As a result, it is a paramagnetic current. The current
dominates the magnetic response of the ring in vicinities
of centers of even q sectors, including small fluxes at q �
0, where energies of the states (4) and (5), are most close to
the Fermi surface. The paramagnetic response of the zero-

energy states is known to take place also near surfaces of
d-wave superconductors [18,19].

Conclusion.—Energies and wave functions of the low-
energy quasiparticle states have been obtained analytically
in d-wave superconducting rings threaded by an
Aharonov-Bohm magnetic flux. The states turn out to
deviate from the zero energy due to the supercurrent-
induced Doppler shift. They form a paramagnetic response
of the rings at small fluxes. The Doppler-shifted zero-
energy states are found to exist only for pairings with
even angular momenta of the center of mass of Cooper
pairs. This macroscopic quantum effect breaks h=2e peri-
odic behavior of the supercurrent in the ring, in agreement
with the results of Ref. [8]. The analytical approach devel-
oped in the present work, demonstrates explicitly that the
quantization of the orbital angular momentum and the
condition for the single valuedness of the superconductor
wave function play the key role in a formation of the
difference between quasiparticle subgap spectra at even
and odd q.
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