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Lothar Mühlbacher and Eran Rabani
School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

(Received 9 July 2007; published 1 May 2008)

A real-time path-integral Monte Carlo approach is developed to study the dynamics in a many-body
quantum system coupled to a phonon background until reaching a nonequilibrium stationary state. The
approach is based on augmenting an exact reduced equation for the evolution of the system in the
interaction picture which is amenable to an efficient path integral (worldline) Monte Carlo approach.
Results obtained for a model of inelastic tunneling spectroscopy reveal the applicability of the approach to
a wide range of physically important regimes, including high (classical) and low (quantum) temperatures,
and weak (perturbative) and strong electron-phonon couplings.
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In recent years there has been considerable interest in the
study of quantum mechanical systems at the nanometer
scale that are driven out of equilibrium. Experimental
breakthroughs on transport in molecular junctions have
uncovered fascinating behavior in molecular systems far
from equilibrium [1,2]. Much attention has been given to
the study of the transport through strongly correlated sys-
tems in which electron correlations are dominant and lead
to interesting physics such as the nonequilibrium Kondo
effect [3–6] and Coulomb blockade [7] in quantum dots or
molecules, tunneling in a Luttinger liquid [8,9], or inelastic
effects induced by electron-phonon interactions [10] as
probed by inelastic electron tunneling spectroscopy [11].

Exact theoretical treatment of such many-body systems
in contact with a phonon background is rather sparse and
includes only a small class of simplified model problems
[12–14]. For a general solution mean field equations based
on the many-body nonequilibrium Green’s function
(NEGF) approach can be formulated [15]. However, these
approaches are quite limited since in many cases they are
based on a perturbative scheme and the inclusion of
higher order corrections is not always clear or systematic.
Numerical approaches include auxiliary field Monte Carlo
(MC) calculations [16,17] and a MC diagrammatic expan-
sion of the partition function [18–20]. However, both
approaches have only been applied to imaginary-time cal-
culations. Thus, the development of a general approach
suitable for the treatment of nonequilibrium many-body
quantum systems with both bosonic as well as fermionic
degrees of freedom (DOF) remains a grand challenge.

In this Letter we present a novel approach aimed at
obtaining exact numerical results for various dynamical
quantities such as the current, conductance, dot population,
etc., in a many-body quantum system that is driven out of
equilibrium. We focus on a well-studied model of inelastic
tunneling spectroscopy [21–24], where a quantum dot is
coupled to two fermionic reservoirs representing the left
and right leads at chemical potentials of �L and �R,
respectively, and to a bosonic bath representing the phonon
environment. Motivated by the success of real-time path-

integral Monte Carlo (PIMC) techniques developed for
dissipative systems [25–28] and the diagrammatic MC
approach for imaginary-time many-body systems [18–
20], we combine both procedures and formulate an exact
real-time path integral (PI) representation for the dynami-
cal quantity of interest. To reduce the computational com-
plexity we integrate out the fermionic leads and the
bosonic environment and obtain expressions for their cor-
responding influence functionals [29,30]. We develop an
adequate MC procedure where we propagate the density
matrix from an initial factorized condition towards a
steady-state.

A nonequilibrium noninteracting quantum dot coupled
to a phonon environment can be described by the
Hamiltonian
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The time-dependent current from the left lead onto the dot
can be written as
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where W0 � W�0�LR �W
�0�
D;Ph is the initial factorizing prepa-

ration,UI�t� � eiH0t=@e�iHt=@ is the interaction picture time
evolution operator with H0 � HLR �HD;Ph � HLR �

HD �H
�I�
D;Ph �HPh, and dH0

�t� � eiH0t=@de�iH0t=@.
We present the approach for a quantum dot which is

initially empty; the expressions for the case of an initially
occupied dot (or a mixed preparation) can be obtained
straightforwardly, as well as those for the right current
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IR�t�, the conductivity g�t�, the dot’s population P�t� etc.
After expressing the time evolution operators in Eq. (2) by
virtue of Dyson series, IL�t� can be written as an infinite
sum over time-ordered integrals,
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Here, dHD;Ph
�t� � eiHD;Pht=@de�iHD;Pht=@ � dH0

�t�, and f~sjg �
fs01; . . . ; s02n0 ; t; s2n�1; . . . ; s1g is a contour-ordered sequence
of time points residing on the forward (sj) and backward
(s0j0) time axis. Without the presence of the phonons,
Eq. (3) essentially resembles a continuation of the dia-
grammatic expansion of the partition function [18,19,31]
from imaginary into real time. Analogously, the trace over
the leads DOF can now be performed exactly, yielding

 L �t1; . . . ; t2N� � iN det�M�; (4)

where M is a matrix with elements Mij � 	�
<
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t2i� � �<
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L;R�t� (�>

L;R�t�) denotes the
leads’ lesser (greater) self energy in the time domain. G in
Eq. (3) represents a 2�n� n0 � 1�-point correlation func-
tion of the dot-phonon subsystem along the Kadanoff-
Baym contour C:s 2 0! t! 0. It is most conveniently
evaluated in the framework of Feynman PIs, which allow
to integrate out the phonon DOF exactly [29]. For this
purpose, we first introduce the dot path variables ��s�
and �0�s� denoting the state of the dot along the forward
and backward branches of C, respectively, with ��0��s� � 0
(1) referring to an empty (occupied) dot. These dot forward
and backward paths ��0! t� and �0�t! 0�, respectively,
are uniquely defined by f~sjg, with

 ��s� � 	1� ��1�
P

2n�1
j�1

��s�sj�
=2 (5)

and �0�s� accordingly (cf. Fig. 1). Transitions between the
two dot states can only be induced by the interaction part
H�I�D;LR acting at the times f~sjg. The latter thus represent the
kink times of the dot path [32,33], between which ��0��s�
remains constant; in this spirit, Eq. (3) closely resembles

the instanton expansion of the partition function in the
spin-boson model [32]. In terms of � and �0, G can now
be expressed as

 G � exp
�
i�D

Z t

0
ds	��s� � �0�s�


�
F 	�;�0
; (6)

where F denotes the Feynman-Vernon influence func-
tional [29] summarizing the influence of the phonons for
an arbitrary distribution of the parameters M� and !�.

While the expressions (4) and (6) for L and G allow for
a rather compact expression of IL�t�, they introduce retar-
dation effects which are arbitrarily long ranged in time,
making analytical progress rather cumbersome. To allow
for a numerical evaluation of Eq. (3), the integrals therein
are approximated according to
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where � � t=q. The systematic errors can be made arbi-
trarily small by increasing q accordingly. Performing the
sums over all kink numbers and (discretized) kink times is
now equivalent to summing over all possible (discretized)
dot paths f�j � ��j��; �0j0 � �0�j0��g, such that Eq. (3)
can be written as a discretized PI,

 IL�t� � 2e
X
f�j;�0j0 g

���� �n�1L�f�j; �0j0 g�G�f�j; �
0
j0 g�; (8)

where �n denotes the number of kinks of the path f�j; �0j0 g.
Equation (8) can now readily be evaluated by means of PI
(or worldline) MC calculations [28,33]. Note that while the
systematic error can be avoided by employing continuous
worldline MC calculations, the discretization scheme al-
lows to compute and store all quantities needed to evaluate
L and G prior to performing the MC moves, resulting in a
very efficient sampling procedure.

We now turn to discuss the application of the proposed
approach to the model system described by the
Hamiltonian (1). In the present approach the effect of the
leads is fully determined by the self energies �<=>

L=R �t�
[cf. Eq. (6)], which are defined in terms of ���� � �L��� �
�R��� in Fourier space [15]. ���� is taken to be energy
independent (wide band limit) with a soft cutoff at � �
��c: �L=R��� �

�L=R
	1�e�����c�
	1�e������c�


. In all results pre-

FIG. 1. Dot forward and backward paths ��0! t� and �0�t!
0�, respectively, and kink times f~sjg � fsj; s0jg.
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sented below, �L � �R, � � 5� � 5��L � �R�, and �c �
10� or 20� to converge the results. Similarly, the phonon
influence functional F is completely specified by the
phonon spectral density [29], J�!� � 	

@
2

P
�M

2
���!�

!��. For a single phonon coupled to a secondary bath via
a coupling constant 
, J�!� becomes a Lorentzian: J�!� �


!
	�!=!0�

2�1
2�	@2
!0!=�2M2
0�


2 [34]. We note in passing that the

proposed simulation scheme does neither depend on the
particular form of �<=>

L=R �t� nor of J�!�.
Figure 2 shows the time-dependent current and dot

population for different values of the model parameters
for T < � (quantum regime) and M0 > � (strong cou-
pling). IL=R�t� (lower panels) are characterized by damped
coherent oscillation with a long time exponential decay to
a steady-state value. While the steady-state current can be
extracted from an exponential fit to IL=R�t�, the average
current I�t� � 1

2 	IL�t� � IR�t�
 (upper left panel) typically
decays much faster to steady state, such that in most cases
it could be obtained as the corresponding plateau value.
Our MC scheme provides converged results despite the
notorious fermionic and dynamical sign problems. While
the former has been reported to be practically absent in
imaginary-time diagrammatic MC calculations [18,19],
the latter is diminished by decoherence arising from the
influence of the leads and the bosonic bath.

The fact that I�t� approaches faster to steady state than
IL=R�t� is consistent with other flux-based methods [35] and
can be rationalized by looking at dynamical fluctuations
under equilibrium conditions. This is depicted for the case
where �L � �R and the system decays to equilibrium.
IL=R�t� exhibit pronounced coherent oscillations with finite
values even at t > 5@=� while their average value vanishes
for all times.

In Fig. 3 we plot the steady-state current I as a function
of the bias �L ��R � eV for different electron-phonon

couplings M0 (lower panel), phonon frequencies !0

(middle panel), and couplings 
 to a secondary bath (upper
panel) for kBT < � (quantum regime), covering a wide
parameter range from the Landauer inelastic case through
the perturbative regime to the strong coupling limit. When
the coupling 
 between the primary oscillator and the
secondary phonon bath is small we observe steps in I�V�
at integer values of eV � 2@!0 [10]. As 
 increases or for
an Ohmic spectral density these steps diminish and even-
tually disappear, signifying the wide range of phonon
frequencies contained in the spectral density. As M0 in-
creases the value of the current decreases from the
Landauer inelastic single-channel value to lower values.
Our approach clearly captures elastic effects at all values of
M0 > 0 as depicted by the lower values of the current and
by the steps at twice the frequency of the primary phonon
mode. Comparing the numerically exact PIMC results to
an approximate method which is based on a generalization
of the single particle approximation [36] to include the
leading order term of the Fermi sea [21], we find quanti-
tative agreement for small values of the voltage corre-
sponding to the first step of I�V�. For larger values,
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FIG. 2 (color online). Plots of IL�t� (lower left panel), IR�t�
(lower right panel), average current I�t� (upper left panel), and
P�t� (upper right panel) for M0 � 4 and kBT �
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FIG. 3 (color online). Plots of the steady-state current I as a
function of the bias voltage for @�D � 0, �L;R �

eV
2 , � eV

2 , and
kBT �

1
5 , in units of �. Circles, diamonds, and triangles denote

QMC data while lines refer to the approximation of [21].
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however, we observe significant deviations for M0=� 
 4.
These deviations signify the importance of high order
effects of the Fermi sea to the transport process, which
are naturally included in the real-time PIMC approach. We
note that other approximate methods, not discussed here,
can also be applied to calculate for the steady-state current
(see, e.g., Refs. [37,38]).

In conclusion, we have developed a novel real-time
PIMC approach to study the dynamics in open quantum
systems that are driven out of equilibrium. The approach is
based on expressing the time evolution by virtue of Dyson
series, before reducing the dynamics of the entire system
by integrating out the fermionic and bosonic baths and
introducing exact influence functionals. The remaining
infinite sum over contour-ordered time integrals is then
evaluated by PI (worldline) MC calculations. We believe
that our approach is capable of resolving several short-
comings found in currently used approaches. First, it is not
based on any perturbative treatment and can provide exact
numerical results. Second, the real-time propagation
scheme allows to study transient phenomena and time
scales and also to include time-dependent fields. Finally,
it can be applied to a general many-body problem, as long
as an efficient sampling strategy can be found.

We have applied the approach to calculate the time-
dependent current in a well-studied model of inelastic
tunneling spectroscopy, where a quantum dot is coupled
to two fermionic leads and to a bosonic phonon bath.
Numerical results indicate that the approach is robust and
can be used for a wide range of model parameters spanning
the classical to quantum limits, a range of experimentally
accessible chemical bias, different phonon frequencies,
weak to strong electron-phonon couplings, a wide range
of couplings between the primary phonon mode and a
secondary phonon bath, and an arbitrary spectral density
of the latter. The approach is still limited for regimes where
the steady-state time scale and/or the decay time of coher-
ent oscillations are similarly stretched. In addition, we
expect an exponential scaling with number of electronic
DOF, and correspondingly poor statistics. However, these
limitations can be substantially attenuated by exploiting
the large body of existing MC schemes for dissipative
systems [25,26,28] combined with the advantages of dia-
grammatic MC approach for the fermionic sign problem
[18,19].
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[25] R. Egger, L. Mühlbacher, and C. H. Mak, Phys. Rev. E 61,

5961 (2000).
[26] D. E. Makarov and N. Makri, Chem. Phys. Lett. 221, 482

(1994).
[27] H. Wang and M. Thoss, J. Chem. Phys. 119, 1289 (2003).
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