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For quantum effects to be significant in plasmas it is often assumed that the temperature over density
ratio must be small. In this paper we challenge this assumption by considering the contribution to the
dynamics from the electron spin properties. As a starting point we consider a multicomponent plasma
model, where electrons with spin-up and spin-down are regarded as different fluids. By studying the
propagation of Alfvén wave solitons we demonstrate that quantum effects can survive in a relatively high-
temperature plasma. The consequences of our results are discussed.
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Recently, several studies of quantum plasmas have ap-
peared in the literature [1–15], where the Bohm–
de Broglie potential and the Fermi pressure [1–7], spin
properties [8–12,16–18], as well as certain quantum elec-
trodynamical effects [13–15,19] are accounted for. The
applications range from plasmonics [20] and quantum
wells [21], to ultracold plasmas [22], and astrophysics
[13,23]. Quantum plasma effects can also be seen in scat-
tering experiments with solid density targets [24]. The
usual regime where quantum effects are important involves
dense low-temperature plasmas, where either the Fermi
pressure is comparable to the thermal pressure or the
thermal de Broglie wavelength times the plasma frequency
is comparable to the thermal velocity. In recent studies of
spin effects in plasmas [8–12], the condition for quantum
effects to be important has been found to be somewhat
different from the case of nonspin quantum plasmas [1–7],
but also here high temperatures tend to make quantum
effects small.

In the present Letter we study a weakly collisional high-
temperature plasma. In particular, we focus on the case
where the temperature over magnetic field ratio is suffi-
ciently high to make spins randomly oriented at thermody-
namic equilibrium. Within the one-fluid model, such a
condition tends to make the macroscopic spin effects neg-
ligible [8–11]. However, here we study a two-electron fluid
model, where the different electron populations are defined
by their spin relative to the magnetic field. Evaluating this
model for the particular case of Alfvén waves propagating
along the external magnetic field, it is found that linearly
the predictions agree with the one-fluid spin model.
Nonlinearly, however, the induced density fluctuations of
the spin-ponderomotive force is significantly different for
the two-spin populations. As a consequence, the self-
nonlinearity of the Alfvén waves gets a large contribution
from the spin effects, even for a high-temperature plasma.
In general, the conclusion is that spin effects cannot be
neglected even in moderate-density high-temperature plas-
mas that normally are regarded as perfectly classical.

Neglecting spin-spin interactions, the equations of mo-
tion are [8–12]

 @tns � r � �nsvs� � 0; (1)

where ns and vs are the density and velocity of species s,
s � i, �, � enumerates the plasma particle species and �
denotes the two types of electrons,
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and

 �@t � vs � r�Ss � �
2�s

@
B� Ss; (3)

where Ss is the spin of species s, qs is the charge of species
s, ps � ps�Ts; ns� is the pressure of species s and cs �
�dps=dns�1=2 is the sound speed of species s (where we
have assumed an isothermal plasma) containing also con-
tributions due to the Fermi pressure, �s is the magnetic
moment of species s, and ��� 	 �B � e@=2me is the
Bohr magneton, e is the magnitude of the electron charge,
@ is Planck’s constant, me is the electron rest mass, and c is
the speed of light. We note that Einstein’s summation
convention has been used in (2). In what follows we will
neglect the quantum corrections to the ion momentum
equation, since from Eq. (2) the quantum terms scales as
m�1
s .
For temporal variations of the magnetic field faster than

the inverse electron cyclotron frequency, spin flips can be
induced. Furthermore, particle collisions can also reverse
the spin, although it can be seen from the Pauli
Hamiltonian [8] that the probability for this typically is
far less than unity. Thus, to make sure that spin reversal
does not occur, we consider dynamics on a time scale

PRL 100, 175001 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
2 MAY 2008

0031-9007=08=100(17)=175001(4) 175001-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.100.175001


shorter than the inverse spin transition frequency, but lon-
ger than the inverse cyclotron frequency. We also note here
that the inverse spin transition frequency is at least as long
as the inverse collision frequency. For this case, we can
replace the spin evolution Eq. (3) with the relation S� �

�@=2�B̂, where B̂ denotes a unit vector in the direction of
B, for electrons with spin-up and -down relative to the
external magnetic field.

The coupling between the quantum plasma species is
mediated by the electromagnetic field. The magnetizations
due to the different spin sources are M� �

�2�Bn�S�=@ � ��Bn�B̂. Ampère’s law then takes
the form

 c2r�B � c2�0�j� r� �M� �M��� � @tE; (4)

where the free current is denoted j. Moreover,

 "0r �E � qini � e�n� � n��: (5)

The system is closed by Faraday’s law

 r � E � �@tB: (6)

In previous works [8–12], electrons have been treated as
a single population, with a single macroscopic velocity v
and spin vector S. As argued above, for fast dynamics in an
approximately collisionless plasma, this is not appropriate,
as the populations with positive and negative spins along
the magnetic field will not change spins on the short time
scales considered, and as seen in Eq. (2) the two popula-
tions are described by separate evolution equations. If we
describe the plasmas by a single electron population, with a
background spin distribution close to thermodynamic equi-
librium, the spin effects are limited to a certain extent
whenever �BB0=kBTe 
 1. This is due to the thermody-
namic Brillouin distribution for spins / tanh��BB0=kBTe�
describing the macroscopic net effect of the spin orienta-
tion. Thus within the single electron fluid model, we need
low temperatures or very strong magnetic fields for spin
effects to be important. By contrast, within the two-fluid
electron model, spin effects may be of importance also in a
weakly magnetized high-temperature plasma, as will be
demonstrated below.

As an example, we consider the nonlinear response to a
low-frequency electromagnetic Alfvén wave pulse propa-
gating parallel to an external magnetic field. In linear
ideal magnetohydrodynamic (MHD) theory, the magnetic
field perturbation thus propagates along the external mag-
netic field B0 � B0ẑ with the Alfvén velocity cA �
�B2

0=�0�0�
1=2, where �0 is the unperturbed mass density.

Since linearly the Alfvén wave has no density perturbation,
the quantum effects of the Bohm–de Broglie potential and
the Fermi pressure do not change this result. In what
follows, such quantum effects will be omitted. As found
in [11], within a single-fluid spin model, the Alfvén veloc-
ity is decreased by a factor 1� �@!2

pe=2mec2!�0�ce ��
tanh��BB0=kBTe� due to the spin, where !pe is the elec-

tron plasma frequency,mi the ion mass,!�0�ce � e�0H0=me
is the electron cyclotron frequency due to the magnetic
field �0H0 	 B0 ��0M0, which is the field with external
sources only; i.e., the contribution from the spins is ex-
cluded (here M0 is the unperturbed magnetization due to
the spin sources). For �BB0 
 kBTe the correction factor
for the Alfvén velocity is close to unity, and the approxi-
mation �0H0 � B0 is a good one. This is the case that will
be considered below, and the spin corrections to the linear
Alfvén velocity will therefore be omitted in what follows.
Furthermore, the envelope of a weakly modulated Alfvén
wave will propagate with a group velocity vg ’ cA for
frequencies !
 !ci [25], where !ci is the ion cyclotron
frequency.

The ponderomotive force of this envelope will drive
low-frequency longitudinal perturbations (denoted by
superscript ‘‘lf’’ in what follows) that are second order in
an amplitude expansion, and to leading order depend on a
single coordinate � � z� cAt. Thus, the dynamics is con-
sidered to be slow in a system comoving with the group
velocity. Neglecting spin, for a slowly varying magnetic
field perturbation of the form B � B�z; t� exp�i�kz�
!t��ê� c:c: (where ê is a unit vector perpendicular to ẑ
and c.c. denotes complex conjugate), the low-frequency
MHD momentum balance can be written

 �0@tv
lf
i � �@z�jBj

2=�0 � �kBTi � kBTe�n
lf�; (7)

where index i denotes ions. For simplicity we assume a
weak magnetic field, B0 
 ��0�0�kBTi � kBTe�=mi�

1=2.
Relating the low-frequency perturbations of the density
and velocity using Eq. (1), the left-hand side of Eq. (7) is
then found to be negligible, and the density depletion is
given by

 nlf � �
jBj2

�kBTi � kBTe��0
: (8)

Moreover, since we have charge neutrality within the MHD
approximation, we have here neglected the index i on the
density, since the total electron density will be the same for
a proton-electron plasma. Next, we add the spin terms in
our model. Again neglecting the ion inertia, the MHD low-
frequency force balance Eq. (7) is replaced by

 Fp� � Fp� � @z�jBj
2=�0 � �kBTi � kBTe�n

lf�; (9)

where the ponderomotive force contributions Fp� are low-
frequency perturbations due to the terms 2�snsSasrBa=@
in the electron momentum equations. Including the spin
vectors component in the direction of the perturbed mag-
netic field, the sum of these spin force contributions can be
written

 Fp� � Fp� �
n0

2

�BB0

kBTe

e@
me

@
@z

�
jBj2

B0

�
; (10)

where we have used that the unperturbed density difference
(n0� � n0�) of the two-spin populations in thermodynam-
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ical equilibrium is proportional to tanh��BB0=kBTe� �
�BB0=kBTe. Thus the net effect of the spin-ponderomotive
force on the ion density as well as the total electron and ion
density is very small in the regime �BB0=kBTe 
 1, simi-
larly as we would have for a single electron spin model,
and, consequently, Eq. (9) is a valid approximation.

The interesting difference between different fluid mod-
els comes when we analyze the density perturbations of the
two-electron populations separately. The low-frequency
momentum balance equations for the different electron
species are

 en0�
@�lf

@z
� kBTe

@nlf
�

@z
�

�
1


e@�0n0�

meB0

�
@
@z

�
jBj2

�0

�
� 0;

(11)

where we have introduced the electrostatic low-frequency
potential �lf (this potential does not appear in the overall
momentum balance, as the plasma is quasineutral). By
adding the � parts of Eq. (11) and integrating we obtain

 nlf
� � n

lf
� �

en0�lf

kBTe
�

1

kBTe

�
1�

�BB0

kBTe

�BB0

mic
2
A

�
jBj2

�0
;

(12)

to first order in the expansion parameter �BB0=kBTe.
Because of the small factor �BB0=kBTe in front of the
last term, the spin effects on the total electron population
are small, in agreement with Eq. (10), again justifying the
omission of spin effects in Eq. (8). However, solving
instead for the density difference between the two-electron
populations we find

 nlf
� � n

lf
� �

2

kBTe

�BB0

mic2
A

jBj2

�0
: (13)

The importance of the density difference displayed in
(13) appears when the nonlinear self-interaction of the
Alfvén waves is studied. The momentum equation contains
the term �j� B=n�nl, where nl denotes the nonlinear part
and j is determined from Eq. (5) with the displacement
current neglected. Omitting the terms of higher order in the
expansion parameter �BB0=kBTe we find

 

�
j� B
n

�
nl
� �

�ik�B1� � B0

�0n0

nlf

n0

�
1�

�
2�BB0

mic2
A

�
2
�
;

(14)

where the last term represent the two-fluid electron spin
contribution. This results in a corresponding spin-
modification of the self-nonlinearity of the Alfvén waves.
Including weakly dispersive effects due to the Hall current,
parallel propagating Alfvén waves are described by the so
called derivative nonlinear Schrödinger (DNLS) equation
[26]. For a quasimonochromatic wave as considered here,
the DNLS equation reduces to the usual nonlinear
Schrödinger (NLS) equation [27] of the form

 i@tB1 �
v0g
2
@2
�B1 �Q

jB1j
2

B2
0

B1 � 0: (15)

Here v0g � dvg=dk is the group dispersion, � � z� vgt is
the comoving coordinate, and vg is the group velocity.
These quantities are determined from the Alfvén
wave dispersion relation, which reads !2 � k2c2

A�1�
kcA=!ci�, when weakly dispersive effects due to the Hall
current is included [25]. The upper (lower) sign corre-
sponds to right (left) hand circular polarization. The non-
linear coefficient is Q � Qc�1� �2�BB0=mic

2
A�

2�, where
the classical coefficient is Qc � kc3

A=4�c2
A � c

2
s� ’

�kc3
A=4c2

s . The NLS equation has been studied extensively
[28], and as is well-known it admit soliton solutions in 1D,
and can describe nonlinear self-focusing followed by col-
lapse in higher dimensions. Furthermore, the evolution
depends crucially on the sign of the nonlinear coefficent,
which may change due to the spin effects. However, our
main concern in this context is not the evolution of the
Alfvén waves, which were chosen just as an illustration.
The fact that interests us here is that spin can modify the
dynamics even when the spins are almost randomly dis-
tributed due to a moderately high temperature (i.e., when
�BB0=kBTe 
 1). The approximately random distribution
of spins is shown in the dispersion relation of the linear
wave modes, which are more or less unaffected by the
spins since linearly the total spin contribution on the elec-
trons cancel to leading order. Nonlinearly, however, the
consequences of the different density fluctuations induced
in the spin-up and spin-down populations are seen. The
unique feature of this quantum effect is that is survives
even for a high temperature. By contrast, well-known
quantum plasma effects like the Fermi pressure, and the
Bohm–de Broglie potential becomes insignificant for high
temperatures. This is also true for single-fluid spin effects
[8–12].

An illustration of the regimes where the different quan-
tum plasma effects become significant is provided in
Fig. 1. In particular we note that the two-fluid nonlinear
spin effects are important for high plasma densities and/or
a weak (external) magnetic fields. For comparison, both the
Fermi pressure and the Bohm–de Broglie potential need a
low-temperature or a very high density to be significant.
Single-fluid spin effects can also be significant in this
regime, or in the regime of ultrastrong magnetic fields
that can occur in astrophysical applications. Especially
interesting is that two-fluid nonlinear spin effects can be
significant in a high-temperature regime that is normally
perceived as classic. While this obviously is an intriguing
result, a word of caution is needed. Although our results
clearly show that spin effects can be important when
�BB0=mic

2
A approaches unity, we note that in a number

of applications, spin effects of the kind discussed here can
be suppressed even if �BB0=mic2

A is large. These include:
(i) Systems where the dynamics is dominated by compres-
sional effects. In such problems the thermal pressure force
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dominates over the spin force of the electrons, and spin
effects are suppressed unless �BB0=kBTe ! 1; (ii) High
density collisional plasmas. In such cases the spin orienta-
tion changes rapidly and different spin populations cannot
be sustained; (iii) Systems where the spin forces are neg-
ligible as compared to the electrostatic force.

Furthermore, the strong magnetic fields needed for con-
finement tend to make the two-fluid spin effects studied
here negligible for magnetically confined plasmas.
Nevertheless, even with the above cases excluded, our
discussion shows that there is a large range of plasma
problems that traditionally have been dealt with using
purely classical plasma equations, but where the electron
spin properties give a significant contribution to the dy-
namics. In general the mechanism can be summarized as
follows: for a weakly magnetized initially homogeneous
plasma, the spin-up and down populations are (approxi-
mately) equal. However, when an electromagnetic pertur-
bation enters the system, the spin-ponderomotive force
separates the two populations, which in turn modifies the
magnetic field since spin-magnetization no longer cancels.
From then on, a two-fluid electron model is needed. In
particular, in the region of aligned electron spins, the
original magnetic field will be enhanced, and hence
mechanisms of this type can play the role of a magnetic

dynamo. Suitable plasma conditions for nonlinear two-
fluid spin effects to be important may be found in weakly
magnetized inertially confined plasmas, near atmospheric
pressure plasma dischages, as well as in astrophysical and
cosmological plasmas. Exploration of these vast range of
problems remain a major research project.
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FIG. 1 (color online). Regions of importance in parameter
space for various quantum plasma effects. The lines are defined
by different dimensionless quantum parameters being equal to
unity. The effects included in the figure are the Fermi pressure
(dashed black curve), described by the parameter TF=Te /
@

2n2=3
0 =mkBTe, the Bohm–de Broglie potential (solid black

curve), described by the parameter @!pe=kBTe / n
1=2=Te,

single-fluid spin Alfvén effects (dotted black curve), described
by the parameter @2!2

pe=mc2kBTe, and single-fluid spin acoustic
effects (horizontal blue curves), described by the parameter
�BB0=kBTe, where three different magnetic field strengths are
depicted. The quantum regime corresponds to lower tempera-
tures; i.e., it exists below each of the three horizontal curves.
Lastly, the two-fluid spin nonlinear effect derived in this Letter,
described by the parameter �BB0=mic

2
A / n=B0, is depicted by

the three vertical red curves. The quantum regime corresponds to
higher densities; i.e., it exists to the right of each of the three
vertical lines.
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