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We experimentally corroborate the core analytical deductions of Thomson’s 124-year-old theorem, vis-
à-vis the stability of a ring of N vortices. Observations made in water vortices produced inside a cylinder
via a revolving disk confirm that the regular N-gons are stable for N � 6 and unstable for N � 8. The
N � 6 equilibria are exceptionally resilient. When destroyed, they reemerge in their original form. We
reason that the heptagonal system either survives in an exceedingly narrow band of disk speeds or is in
theory critically stable. Contrary to the results with a rotating bottom reported by Jansson et al. [Phys. Rev.
Lett. 96, 174502 (2006)], we show the interfacial axial symmetry does not break spontaneously but
through spectral development, the functional relationship amongst the polygon rotation and disk speed is
surprisingly simple, and the pattern to disk frequency ratio depends on both Froude and wave numbers.
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Whirlpools produced in simple confinements have been
employed to elaborate on some fundamental properties of
rotating flows. Yarmchuk, Gordon, and Packard [1] dis-
closed the existence of quantized stationary vortex arrays
in a rotating cylindrical pail containing superfluid 4He
below the � point. Vettin [2] employed a rotating dish
with a centrally located cylindrical cup filled with ice to
simulate Earth’s polar circulation. Fridman et al. [3] exam-
ined the role of centrifugal instability in the development
of the spiral structure of spiral galaxies in a stationary dish
with a rotating ring or conical cuplike device. In the latter
part of the 1980s during detailed mappings of the free-
surface elevation of liquid vortices [4], the first author
came across an unexpected interfacial symmetry breaking
of a liquid vortex produced in a cylinder via a rotating disk
near the bottom. The experience, among other captivating
manifestations, was reported in a series of articles [5–8]. A
recent letter by Jansson et al. [9] triggered a rejuvenated
interest in the previous discovery [5]. The fundamental
significance of the event in several scientific and techno-
logical disciplines [5,9–11] was the cause behind the en-
sued hype. Among the areas where this phenomenon
appears to be pertinent are atmospheric sciences. Near
the polar region, the Earth’s surface is disklike while the
atmosphere above has an ‘‘interface.’’ Not withstanding the
added complexities associated with large-scale geophysi-
cal vortices, the close resemblance amongst the observed
regular polygonlike free-surface shapes and the weather
patterns in Antarctica [12] is intriguing. Additionally, sat-
ellite images of the eyewall of hurricanes Betsy and Anita
[13] unveil indisputably polygonal structures.

Swirling flows are susceptible to instabilities that often
lead to phenomena such as the roll up of vorticity filament
into vortices via the Kelvin-Helmholtz instability, merging
of vortices, or the emergence of vortex equilibrium patterns
termed ‘‘point vortices.’’ The theoretical work on the last
topic was started by Lord Kelvin [14], who in 1878 solved
the case of three vortices in connection with the now

abandoned theory of vortex atoms. In 1883 Thomson
[15] dealt with the cases of three, four, five, six, and seven
vortices, where he predicted instability to occur for seven
vortices. Havelock [16] generalized the approach to N
vortices, showing that, with no boundary, the case of seven
vortices was neutrally stable, and unstable in the presence
of confining outer or inner boundaries. He also considered
the occurrence of N vortices arranged in a ring with a fixed
central vortex and demonstrated that a sufficiently strong
central vortex could stabilize an otherwise unstable ring.
Dhanak [17] theoretically demonstrated that vortex sys-
tems with small but finite cores pose the same stability
characteristics, with N � 7 being unstable to only one
normal mode of disturbance. Dritschel [18] had found
earlier that N � 7 was unstable to two displacement type
of modes. All the linear analytical approaches of the past
were partial and thus dubious for the case of seven point
vortices. Recently, based on the nonlinear Kirchhoff equa-
tion, Kurakin and Yudovich [19] confirmed that the N � 6
and N � 8 states are stable and unstable, respectively.
Furthermore, they also proved the seven-vortex array to
be stable in theory. It is interesting to note that the theo-
retical derivation for the stability of point vortices has its
foundation in the analogy between point vortices and point
masses, whereby the vortex strength is replaced by the
mass. The previous theoretical models are idealizations
of our experiments when the liquid height is low.

In the experimental side, Yarmchuk, Gordon, and
Packard [1] showed that two-dimensional stable vortex
patterns could evolve in 4He as the superfluid constituent
interacts with the normal fluid component. They were,
however, unable to test directly the stability of the
observed configurations. The equations describing strongly
magnetized electron columns and those describing two-
dimensional Eulerian flows are dual. Because of the latter
dynamic similarity, electron columns in a Malmberg-
Penning trap and ring vortices should evolve identically.
Based on this analogy Durkin and Fajans [20] were able to
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confirm the key theoretical predictions of Havelock [16].
Until recently, however, no direct experimental validation
of the phenomenon has been made in a normal fluid flow.

In this Letter we experimentally confirm directly the
basic conclusions of the venerable theory [14,15], expand
and elaborate on some key attributes of the phenomenon,
and finally report on new developments associated with the
event.

The present tests were conducted using the apparatus
shown in Fig. 1(a). A CCD camera was placed on top of the
cylinder to image the hollow-core vortex formed on the
disk. The camera acquired a sequence of images for each
mode at a rate of 30 frames per second as 8-bit gray-scale
images. The rotary motion imparted to the fluid by the disk
generates a centrifugal force field and pushes the liquid
towards the reservoir’s wall, developing a depression near
the axis of rotation. As the speed of the rotating disk
reaches a specific value the water surface touches the
disk and the line intersection between the liquid, air, and
the surface of disk outlines the core shape. Contrary to the
intuitively expected circular dry spot, the core starts to
develop different polygonal shapes; see, for example,
Fig. 1(b).

Previously [5–8] the N patterns were determined by
visual inspection using a stroboscope. The different poly-
gons and their speed of rotation are now identified and
measured via image processing. The boundary of the pat-
tern is extracted using the segmentation technique applied
on the binary images. The speed of the pattern is accurately
determined using power spectrum analysis of the time
series of the radius of a given point on the pattern bound-

ary. The speed of the disc is measured by the image
juxtaposition of two marks on the disk.

Jansson et al. [9] reported that ‘‘the shape of the free
surface can spontaneously break the axial symmetry.’’
They found the rotation rate of the free-surface polygons
to vary with the disk speed ‘‘in a complicated way.’’ Their
tests were made with ��Rd=Rt� � 1, where Rd and Rt are
the disk and tank radii, respectively. Our recent verifica-
tions using a disk diameter almost equal to the container
validate this ill-defined symmetry breaking. However, with
� � 0:824, 0.887, and 0.944, the polygonal core shapes
evolve gradually and in succession, separated by a gap of
mixed states in between. For exceedingly low rotational
disk speeds (!d), the vortex core remains circular (N � 0).
Increasing its rotation, the flow transfers into another state
characterized by a precessing circular core (N � 1). A
further increase of the disk speed progressively yields
cores with ‘‘ellipsoidal’’ (N � 2), triangular (N � 3),
square (N � 4), pentagonal (N � 5), and hexagonal (N �
6) cross sections. Typical images of the actual equilibria
(with 2 � N � 6) are given in Fig. 1(b). As the disk speed
increases beyond the N � 6 state, a continuous amplifica-
tion of dynamical noise eventually wipes out the sharp
spectral peaks. A typical spectrum of the stationary and
mixed-mode states is shown in Fig. 2(a). Within a specific
equilibrium state the wave celerity increases linearly with
the disk speed [6]. In the beginning of the stationary state
interval, the sides of the pattern curve inwards [Fig. 2(b),
(i) & (ii) and (iv) & (v)]. As the disk picks up speed, the
sides of the polygon flatten out, producing a fuller shape.
The equilibrium polygons are exceptionally stable. When
disturbed or even completely destroyed (by inserting a
solid rod into the flow), the patterns reemerge after a short
period of time almost in their original form. The last
suggests that this phenomenon is not particularly sensitive
to initial conditions. Note that a small degree of hysterisis
(of�4%) exists [8]. The transition between two stationary
states happens in a surprisingly straightforward manner.
The gap between neighboring equilibria is inhabited by
mixed-mode states. For example, between the N � 3 and
N � 4 interval [Fig. 2(b), (iii)], the core consists from the
superposition of waves from the adjoining equilibria. Close
to the N state the N wave dominates, while close to the
opposite side the N � 1 wave takes over. Because the two
have different phase speeds the core is not stationary. As
the disk speed increases from N � 3 towards N � 4
[Fig. 2(b)], one of the lobes grows fatter mutating after-
wards into two, thus providing the required extra lobe to
form the neighboring state [Fig. 2(b), (iv) & (v)].

In our previous exploratory experiments, visual inspec-
tion using a water-soluble dye revealed that the patterns
were present even if the core was flooded. Recent higher
fidelity images shown in Fig. 2(c) confirm the old obser-
vation. Near the core, a ‘‘circular’’ dry spot exists.
However, the region where the apexes of the polygon are
located is flooded with water. The light coloring at the
polygon tips indicates a free-surface depression. The last is

FIG. 1. (a) Schematic of the experimental apparatus. The
present experiments were conducted using tap water in a
284 mm diameter stationary cylindrical container with a
252 mm diameter circular disk spinning near the bottom. A
variable-speed electrical motor drives the disk. The initial water
level was measured using a ruler attached to the side of the tank.
Three different initial liquid heights (20, 25 and 30 mm) were
used in the present experiments; (b) typical equilibria of N � 2,
3, 4, 5, and 6.
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due to the local centrifugal force generated by the satellite
vortices orbiting the central vortex. In their experiments
with ethylene glycol, Jansson et al. [9] described clearly
the presence of ‘‘spiraling vortices on top of the polygon
structure.’’ Furthermore, the numerical simulations of
Miraghaie, Lopez, and Hirsa [21] for N � 3 in shallow
depth show indisputably the presence of three vortices
located at the apexes of the regular triangle. When the
rotation intensifies, both parent and satellite vortices be-
come stronger. The receding water develops lobes in the

place where the secondary vortices existed, and thus forms
the dry polygonal central pattern shown in Fig. 2(d).
Because of the added radial thrust a free-surface upwelling
near the cylindrical wall, where these vortices are posi-
tioned, is noticeable. Hence, the polygonal shapes can be
viewed as either waves inside the main vortex or ensembles
of satellite vortices located at the corners of a polygon
attached to the parent vortex, rotating in unison at a con-
stant speed. In other words, when a liquid is the working
fluid, the manifestation displays a vortex-wave duality.

It is pleasing to find the main predicted stability charac-
teristics of the ideal problem [14–16] to be ingrained in the
real phenomenon. Thus our observations reveal that all
systems with N � 6 vortices located in the vertices of
regular polygons, arranged in a circular row, with an
exterior boundary, under the presence of a strong central
vortex, are stable. The N � 8 ensembles are unstable and
hence undetectable. Despite the repeated extra care taken
to isolate all the vibrations in the experimental apparatus,
we were also unable to produce the N � 7 case. Jansson
et al. [9] were also able to produce only polygons up to
N � 6. Closely examining the equilibrium spectrum [see
Fig. 2(a)], we notice that the interval of the survival of the
states decreases with the wave number. For N � 6 the
equilibrium lasts within the interval [225, 228] rpm.
Therefore, if N � 7 exists, it must either live in an exceed-
ingly narrow range of disk speeds or it is in theory critically
stable. Because in real settings the problem is infested by
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g is the gravitational constant. Note that Buckingham’s �
theorem for the problem under consideration leads to !p=!d �

fN;Fr; ho=Rd; Rd=Rg. Two sets of data are presented. For the
first, the pattern speed (open geometric shapes) was determined
manually, while for the second (solid geometric shapes) through
image processing.

FIG. 2 (color online). (a) A typical equilibrium and mixed-
mode gaps spectrum for ho � 25 mm. The bandwidth of both
the equilibrium and mixed modes become narrower with the
wave number N. (b) Changes in the polygonal structure within
the N � 3 (i & ii) and 4 (iv & v) states. In the beginning of the
stationary state interval, the sides of the pattern curve inwards.
As the disk speed increases, the sides of the polygon flatten out
producing a fuller shape, (iii) typical mixed-mode state whereby
the core consists from the superposition of both fundamental
frequency waves N � 3 and 4. The centrifugal force pushed the
liquid outwards. The retreating liquid exposes the structure of
the core. Every vortex with an interface develops a free-surface
depression near the axis of rotation. On the apexes of the
polygonal core shapes, satellite vortices exist. Each satellite
vortex possesses a dimple, very evident by the faded color of
the flooded polygon tips in (c), indicating the presence a free-
surface depression due to the satellite vortex. Since the parent
vortex is stronger, the central portion is dry. When the rotation
intensifies, both parent and satellite vortices become stronger.
The receding water develops lobes in the place where the
secondary vortices existed, and thus forms the dry polygonal
central pattern (d).
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various types of internal and external disturbances, if the
N � 7 system is critically stable, it will not appear.

According to one of Havelock’s [16] corollaries, the
point vortices should stabilize on rings of about half the
radius of the containing vessel. Our present tests with ho
ranging from 20 to 30 mm and those of [9] show that the
equilibrium patterns (with N higher than 2) are inscribed
within a circle having a radius of approximately half of the
container radius.

In all past and present experimental trials, the polygonal
shapes were found to rotate at a slower speed than the disk.
For the current tests, where � � 0:887, three different
heights, and for all stable N-gons (including N � 2), the
frequency ratio!p=!d (where!p and!d are the speeds of
the pattern and disk, respectively) was found to decrease
with the Froude number and increases with the wave
number N; see, for example, Fig. 3. The last does not
correspond to 2=3 for N � 2, nor to the !p=!d � 1=N
for 3 � N � 6 as suggested in [9].

As we were finalizing this article, some supplementary
events requiring further attention have surfaced.
Processing the images, in addition to the fundamental N
wave (for 2 � N � 6), we have detected harmonic waves
with 2N, 3N, 4N, 5N, etc., that are encircling the basic
pattern. In an expanded forthcoming paper, we are plan-
ning to examine the attributes of this manifestation in
detail.
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